A new concept for push-pull active optics is presented, where the push-force is provided by means of individual airbag type actuators and a common force in the form of a vacuum is applied to the entire back of the mirror. The vacuum provides the pull-component of the system, in addition to gravity. Vacuum is controlled as a function of the zenithal angle, providing correction for the axial component of the mirror's weight. In this way, the push actuators are only responsible for correcting mirror deformations, as well as for supporting the axial mirror weight at the zenith, allowing for a uniform, full dynamic-range behavior of the system along the telescope's pointing range. This can result in the ability to perform corrections of up to a few microns for low-order aberrations. This mirror support concept was simulated using a finite element model and was tested experimentally at the 2.12 m San Pedro Mártir telescope. Advantages such as stress-free attachments, lighter weight, large actuator area, lower system complexity, and lower required mirror-cell stiffness could make this a method to consider for future large telescopes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.53.007979 | DOI Listing |
NMR Biomed
March 2025
Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.
Hemodynamic measurements such as cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) can provide useful information for the diagnosis and characterization of brain tumors. Previous work showed that arterial spin labeling (ASL) in combination with vasoactive stimulation enabled simultaneous non-invasive evaluation of both parameters, however this approach had not been previously tested in tumors. The aim of this work was to investigate the application of this technique, using a pseudo-continuous ASL (PCASL) sequence combined with breath-holding at 3 T, to measure CBF and CVR in high-grade gliomas and metastatic lesions, and to explore differences across tumoral-peritumoral regions and tumor types.
View Article and Find Full Text PDFReprod Health
January 2025
Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
Background: Mirroring other developed countries globally, the birth rate has decreased in Finland in recent years. The effects of a fear of childbirth (FOC) and psychiatric disorders on the likelihood of having more than one child remain relatively unstudied. This study aims to assess the influence of FOC, psychiatric disorders, and the mode of first delivery on the likelihood of the second birth among primiparous women.
View Article and Find Full Text PDFSci Rep
January 2025
Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland.
Rapid advancements in long-read sequencing have facilitated species-level microbial profiling through full-length 16S rRNA sequencing (~ 1500 bp), and more notably, by the newer 16S-ITS-23S ribosomal RNA operon (RRN) sequencing (~ 4500 bp). RRN sequencing is emerging as a superior method for species resolution, exceeding the capabilities of short-read and full-length 16S rRNA sequencing. However, being in its early stages of development, RRN sequencing has several underexplored or understudied elements, highlighting the need for a critical and thorough examination of its methodologies.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China. Electronic address:
Acellular cellulose-based biomaterials hold promising potential for treating bladder injuries. However, the compromised cellular state surrounding the wound impedes the complete reconstruction of the bladder. This necessitates the development of a bio-instructive cellulose-based biomaterial that actively controls cell behavior to facilitate effective bladder regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!