Water-in-oil emulsion droplets created in droplet-based microfluidic devices have been tested and used recently as well-defined picoliter-sized 3D compartments for various biochemical and biomedical applications. In many of these applications, fluorescence measurements are applied to reveal the protein content, spatial distribution, and dynamics in the droplets. However, emulsion droplets do not always provide entirely sealed compartments, and partitioning of dyes or labeled molecules to the oil phase is frequently observed. Therefore, stable molecular retention in the droplets represents a challenge, and many physical and chemical key factors of microfluidic system components have to be considered. In this study, we investigated the retention of 12 commonly used water-soluble dyes in droplets having six different aqueous phase conditions. We demonstrate that the physicochemical properties of the dyes have a major influence on the retention level. In particular, hydrophilicity has a strong influence on retention, with highly hydrophilic dyes (LogD < -7) showing stable, buffer/medium independent retention. In the case of less hydrophilic dyes, we showed that retention can be improved by adjusting the surfactants physical properties, such as geometry, length, and concentration. Furthermore, we analyzed the retention stability of labeled biomolecules such as antibodies, streptavidin, and tubulin proteins and showed that stable retention can be strongly dependent on dye and surfactants selection.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac504736eDOI Listing

Publication Analysis

Top Keywords

retention
9
key factors
8
stable retention
8
labeled biomolecules
8
emulsion droplets
8
influence retention
8
hydrophilic dyes
8
droplets
5
dyes
5
stable
4

Similar Publications

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

Objective: Boron Neutron Capture Therapy (BNCT) is a novel precision radiotherapy. The key to BNCT application lies in the effective targeting and retention of the boron-10 (B) carrier. Among the various compounds studied in clinical settings, 4-boronophenylalanine (BPA) become the most prevalent one currently.

View Article and Find Full Text PDF

Leveraging Large Language Models to Enhance Dermatology Clinical Trial Patient Recruitment and Retention.

J Invest Dermatol

January 2025

Department of Dermatology, Stanford University, Stanford, California, USA; Department of Biomedical Data Science, Stanford University, Stanford, California, USA. Electronic address:

View Article and Find Full Text PDF

Acute myocardial infarction (MI) remains a leading cause of mortality worldwide, with inflammatory and reparative phases playing critical roles in disease progression. Currently, there is a pressing need for imaging techniques to monitor immune cell infiltration and inflammation activity during these phases. We developed a novel probe, Tc-HYNIC-mAb, utilizing a monoclonal antibody that targets the voltage-gated potassium channel 1.

View Article and Find Full Text PDF

Introduction: Cardiovascular disease (CVD) is the leading cause of death for women in the United States, and U.S. female Veterans have higher rates of CVD compared to civilian women.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!