Colorectal cancer (CRC) is the most common cancer diagnosed worldwide, and the development of metastases is a major cause of mortality. Accumulating evidence suggests that microRNAs are important in carcinogenesis by affecting the expression of genes that regulate cancer progression. A number of studies have shown that miR-206 is frequently downregulated in many human malignancies, including CRC, and is associated with a more malignant phenotype. Previous studies involving HeLa and C2C12 cells have validated the inhibitory mechanism of miR-206 via NOTCH3 targeting. However, whether or not the interplay between miR-206 and NOTCH3 also occurs in CRC is unknown. Therefore, we investigated the tumor suppressive and metastatic effects of miR-206 and its target, NOTCH3, in CRC. Based on the inverse association between the expression of miR-206 and NOTCH3 in CRC tissues, miR-206 mimics were transiently transfected into the SW480 (and its metastatic strain) and SW620 colon cancer cell lines. Upregulation of miR-206 inhibited cancer cell prolife-ration and migration, blocked the cell cycle, and activated apoptosis. The tumor suppressive capacity of miR-206 had a similar effect on CRC cells, although with a different metastatic potential, and may be explained by direct NOTCH3 signaling inhibition and indirect cross-talk with other signaling pathways involving CDH2 and MMP-9. These results support miR-206 as a tumor suppressor in CRC and suggest a potential therapeutic target for clinical intervention.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2015.3731DOI Listing

Publication Analysis

Top Keywords

mir-206 notch3
12
mir-206
9
colorectal cancer
8
tumor suppressive
8
notch3 crc
8
cancer cell
8
crc
7
notch3
6
cancer
6
microrna-206 attenuates
4

Similar Publications

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease, associated with a decreased cognitive function and severe behavioral abnormalities. This study aimed to explore mechanisms of development and progression of AD. Comprehensive analysis of GSE16759 was performed to identify the differentially expressed lncRNAs (DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs).

View Article and Find Full Text PDF

Background: Esophageal cancer (EC) is a common malignant tumor of the digestive tract, the treatment of which involves surgery combined with radiotherapy and chemotherapy, as well as other comprehensive types of treatment. The pathogenesis of EC remains unclear, which hinders the development of clinical therapy and the identification of molecular targets for this disease. Long non-coding RNAs (lncRNAs) have been shown to be associated with the malignant biological behavior of EC, but the specific molecular mechanisms underlying the carcinogenesis of EC are not fully understood.

View Article and Find Full Text PDF

Objective: Vascular smooth muscle cell (SMC) proliferation contributes to neointima formation following vascular injury. Circular RNA-a novel type of noncoding RNA with closed-loop structure-exhibits cell- and tissue-specific expression patterns. However, the role of circular RNA in SMC proliferation and neointima formation is largely unknown.

View Article and Find Full Text PDF

The incidence and mortality of colorectal cancer (CRC) are rising worldwide. Long-noncoding RNAs (lncRNAs) are known to play key roles in the development of human cancers, including CRC. However, the function and underlying mechanism of long intergenic noncoding RNA 00707 (LINC00707) in the development of CRC are unknown.

View Article and Find Full Text PDF

Identification of a novel miR-206-Notch3 pathway regulating mouse myoblasts proliferation.

Gene

May 2019

Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

MicroRNAs (miRNAs) are endogenous short non-coding RNAs and exert their function by targeting mRNAs of genes. miRNA-206 (miR-206) is exclusively expressed in adult skeletal muscles and plays an important role in myogenesis. However, the regulatory mechanisms of miR-206 in myoblasts proliferation and differentiation are still limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!