Corrugated metallic surfaces offer means for efficient amplification of fluorescence bioassay signal based on the near field coupling between surface plasmons and fluorophore emitters that are used as labels. This paper discusses the design of such plasmonic structure to enhance the sensitivity of immunoassays with epi-fluorescence readout geometry. In particular, crossed gold grating is theoretically and experimentally investigated for combined increasing of the excitation rate at the fluorophore excitation wavelength and utilizing directional surface plasmon-coupled fluorescence emission. For Alexa Fluor 647 dye, the enhancement factor of around EF = 10 was simulated and experimentally measured. When applied to a sandwich interleukin-6 immunoassay, highly surface-selective enhancement reaching a similar value was observed. Besides increasing the measured fluorescence signal associated with the molecular binding events on a surface by two orders of magnitude, the presented approach enables measuring kinetics of the surface reaction that is otherwise masked by strong background signal originating from bulk solution.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.032026DOI Listing

Publication Analysis

Top Keywords

epi-fluorescence readout
8
plasmonic amplification
4
amplification bioassays
4
bioassays epi-fluorescence
4
readout corrugated
4
corrugated metallic
4
metallic surfaces
4
surfaces offer
4
offer efficient
4
efficient amplification
4

Similar Publications

Nanophotonic biosensors offer exceptional sensitivity in the presence of strong background signals by enhancing and confining light in subwavelength volumes. In the field of nanophotonic biosensors, antenna-in-box (AiB) designs consisting of a nanoantenna within a nanoaperture have demonstrated remarkable single-molecule fluorescence detection sensitivities under physiologically relevant conditions. However, their full potential has not yet been exploited as current designs prohibit insightful correlative multicolor single-molecule studies and are limited in terms of throughput.

View Article and Find Full Text PDF

Fluorescence microscopy has undergone rapid advancements, offering unprecedented visualization of biological events and shedding light on the intricate mechanisms governing living organisms. However, the exploration of rapid biological dynamics still poses a significant challenge due to the limitations of current digital camera architectures and the inherent compromise between imaging speed and other capabilities. Here, we introduce sHAPR, a high-speed acquisition technique that leverages the operating principles of sCMOS cameras to capture fast cellular and subcellular processes.

View Article and Find Full Text PDF

We report on the implementation of a wide-field time-correlated single photon counting (TCSPC) method for fluorescence lifetime imaging (FLIM). It is based on a 40 mm diameter crossed delay line anode detector, where the readout is performed by three standard TCSPC boards. Excitation is performed by a picosecond diode laser with 50 MHz repetition rate.

View Article and Find Full Text PDF

Corrugated metallic surfaces offer means for efficient amplification of fluorescence bioassay signal based on the near field coupling between surface plasmons and fluorophore emitters that are used as labels. This paper discusses the design of such plasmonic structure to enhance the sensitivity of immunoassays with epi-fluorescence readout geometry. In particular, crossed gold grating is theoretically and experimentally investigated for combined increasing of the excitation rate at the fluorophore excitation wavelength and utilizing directional surface plasmon-coupled fluorescence emission.

View Article and Find Full Text PDF

Detection of viruses by counting single fluorescent genetically biotinylated reporter immunophage using a lateral flow assay.

ACS Appl Mater Interfaces

February 2015

Chemical and Biomolecular Engineering, ‡Biology and Biochemistry, University of Houston, Houston, Texas 77204, United States.

We demonstrated a lateral flow immunoassay (LFA) for detection of viruses using fluorescently labeled M13 bacteriophage as reporters and single-reporter counting as the readout. AviTag-biotinylated M13 phage were functionalized with antibodies using avidin-biotin conjugation and fluorescently labeled with AlexaFluor 555. Individual phage bound to target viruses (here MS2 as a model) captured on an LFA membrane strip were imaged using epi-fluorescence microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!