We investigate, both theoretically and experimentally, self-trapping of light beams in nematic liquid crystals arranged so as to exhibit the optical Fréedericksz transition in planar cells. The resulting threshold in the nonlinear reorientational response supports a bistable behavior between diffracting and self-localized beam states, leading to the appearance of a hysteretic loop versus input excitation. Our results confirm the role of nematic liquid crystals in the study of non-perturbative nonlinear photonics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.22.030663 | DOI Listing |
Comput Biol Med
January 2025
SCOPIA Research Group, University of the Balearic Islands, Dpt. of Mathematics and Computer Science, Crta. Valldemossa, Km 7.5, Palma, E-07122, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, E-07122, Spain; Laboratory for Artificial Intelligence Applications at UIB (LAIA@UIB), Palma, E-07122, Spain; Artificial Intelligence Research Institute of the Balearic Islands (IAIB), Palma, E-07122, Spain. Electronic address:
Sickle cell disease causes erythrocytes to become sickle-shaped, affecting their movement in the bloodstream and reducing oxygen delivery. It has a high global prevalence and places a significant burden on healthcare systems, especially in resource-limited regions. Automated classification of sickle cells in blood images is crucial, allowing the specialist to reduce the effort required and avoid errors when quantifying the deformed cells and assessing the severity of a crisis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.
View Article and Find Full Text PDFJ Cell Sci
January 2025
Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
Here, we apply SuperResNET network analysis of dSTORM single-molecule localization microscopy (SMLM) to determine how the clathrin endocytosis inhibitors pitstop 2, dynasore and Latrunculin A alter the morphology of clathrin-coated pits. SuperResNET analysis of HeLa and Cos7 cells identifies: small oligomers (Class I); pits and vesicles (Class II); and larger clusters corresponding to fused pits or clathrin plaques (Class III). Pitstop 2 and dynasore induce distinct homogeneous populations of Class II structures in HeLa cells suggesting that they arrest endocytosis at different stages.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
A fluoroalkyl-containing electron acceptor (Y-SSM) is designed and synthesized to control the orientation of the benchmark non-fullerene acceptor Y6 in thin films. Due to the low surface energy of the two fluoroalkyl chains at the terminal part of Y-SSM, it spontaneously segregates to the film surface during spin coating, forming a monolayer of edge-on oriented Y-SSM. The Y-SSM monolayer leads to crystallization of the underlying Y6 to induce a standing-up orientation in the bulk of the films, which is strikingly different from pure Y6 films that tend to be a face-on orientation.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic.
Doxorubicin (DOX) is a widely used chemotherapeutic agent known for intercalating into DNA. However, the exact modes of DOX interactions with various DNA structures remain unclear. Using molecular dynamics (MD) simulations, we explored DOX interactions with DNA duplexes (dsDNA), G-quadruplex, and nucleosome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!