A polarization splitter based on a new type of dual-core photonic crystal fiber (DC-PCF) is proposed. The effects of geometrical parameters of the DC-PCF on performances of the polarization splitter are investigated by finite element method (FEM). The numerical results demonstrate that the polarization splitter possesses ultra-short length of 119.1 μm and high extinction ratio of 118.7 dB at the wavelength of 1.55 μm. Moreover, an extinction ratio greater than 20 dB is achieved over a broad bandwidth of 249 nm, i.e., from 1417 nm to 1666 nm, covering the S, C and L communication bands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.22.030461 | DOI Listing |
We propose a low-polarization-sensitive 1 × 2 carrier-injection-type silicon photonic switch consisting of a single Mach-Zehnder interferometer, an input-/output-side polarization splitter and rotators, bidirectional light injection, and an external optical circulator. A polarization-dependent loss (PDL) of 1.3 dB was achieved using the proposed structure, whereas a PDL exceeding 17 dB was observed without the structure.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Electronics and IoT, Chongqing Polytechnic University of Electronic Technology, Chongqing, China.
This study proposes a spin-valley electron beam splitter based on the inner-edge states in a topological-insulator junction, which can allocate different ratios of spin-valley current outputs. Since the inner-edge states are associated with the "nearest path selection" mechanism, this device is referred to as the interface-modulating spin-valley electron beam splitter. Additionally, two perfect spin-valley filters in similar topological-insulator junctions are established in this study.
View Article and Find Full Text PDFNanophotonics
November 2024
Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China.
Atomic magnetometers (AMs) that use alkali vapors, such as rubidium, are among the most sensitive sensors for magnetic field measurement. They commonly use polarization differential detection to mitigate common-mode noise. Nevertheless, traditional differential detection optics, including polarization beam splitters (PBS) and half-wave plates, are typically bulky and large, which restricts further reductions in sensor dimensions.
View Article and Find Full Text PDFWe propose a surface-normal dual-polarization in-phase and quadrature modulator (DP-IQM) that employs a thin dielectric metasurface (MS) layer inserted on a high-speed electro-absorptive modulator array. The metasurface provides the functionalities of all the passive components necessary for a DP-IQM, including a polarization beam splitter/combiner and an interferometric circuit, to a normal-incident beam. A dielectric metasurface composed of silicon nanoposts is designed and fabricated to experimentally demonstrate polarization and beam splitting functionalities with a phase error of less than 0.
View Article and Find Full Text PDFOblique angle of incidence two-way and three-way beam splitters were designed and fabricated. The devices feature two first-order diffraction gratings, arrayed crossed in alternating adjacent tiles, resulting in conical diffraction spot separation of two 1-orders in orthogonal planes while overlapping the 0-order. The two-way beam splitter was designed for 0-order suppression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!