An optical parametric generator and amplifier producing 15 ps pulses at wavelengths tunable around 2 μm, with energies up to 15 mJ/pulse, has been realized and characterized. The output wavelength is chosen to match a vibrational combination band of water. By measuring the induced birefringence changes we prove that a single pulse is able to completely melt samples of ice in the 10⁻⁶ cm³ volume range, both at room pressure (263 K) and at high pressure (298 K, 1 GPa) in a sapphire anvil cell. This source opens the possibility of studying melting and freezing processes by spectroscopic probes in water or water solutions in a wide range of conditions as found in natural environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.22.030047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!