We report on local superficial blood flow monitoring in biological tissue from laser Doppler holographic imaging. In time-averaging recording conditions, holography acts as a narrowband bandpass filter, which, combined with a frequency-shifted reference beam, permits frequency-selective imaging in the radio frequency range. These Doppler images are acquired with an off-axis Mach-Zehnder interferometer. Microvascular hemodynamic components mapping is performed in the cerebral cortex of the mouse and the eye fundus of the rat with near-infrared laser light without any exogenous marker. These measures are made from a basic inverse-method analysis of local first-order optical fluctuation spectra at low radio frequencies, from 0 Hz to 100 kHz. Local quadratic velocity is derived from Doppler broadenings induced by fluid flows, with elementary diffusing wave spectroscopy formalism in backscattering configuration. We demonstrate quadratic mean velocity assessment in the 0.1-10 mm/s range in vitro and imaging of superficial blood perfusion with a spatial resolution of about 10 micrometers in rodent models of cortical and retinal blood flow.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.31.002723DOI Listing

Publication Analysis

Top Keywords

blood flow
12
laser doppler
8
superficial blood
8
quadratic velocity
8
holographic laser
4
doppler
4
imaging
4
doppler imaging
4
imaging microvascular
4
blood
4

Similar Publications

Murine Aortic Valve Cell Heterogeneity at Birth.

Arterioscler Thromb Vasc Biol

March 2025

Department of Pediatrics, Division of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee (T.B., J.R.K., A.J.K., J.L.).

Background: Heart valve function requires a highly organized ECM (extracellular matrix) network that provides the necessary biomechanical properties needed to withstand pressure changes during each cardiac cycle. Lay down of the valve ECM begins during embryogenesis and continues throughout postnatal stages when it is remodeled into stratified layers and arranged according to blood flow. Alterations in this process can lead to dysfunction and, if left untreated, heart failure.

View Article and Find Full Text PDF

Significance: Coronary artery disease is the leading cause of death worldwide, accounting for 16% of all deaths. A common treatment is coronary artery bypass grafting (CABG), though up to 12% of bypass grafts fail during surgery. Early detection of graft failure by intraoperative graft patency assessment could prevent severe complications.

View Article and Find Full Text PDF

Introduction: CD20+ T-cells were described firstly in peripheral blood and later in bone marrow in patients with hematological tumors, and certain immune-mediated diseases. During our hematological diagnostic work, this peculiar subgroup of lymphocytes has been consistently observed associated with untreated monoclonal gammopathy of undetermined significance (MGUS) and myeloma (MM). Despite the expanding literature data, the exact function of CD20+ T cells remains unclear.

View Article and Find Full Text PDF

Introduction: CD47 is highly expressed on cancer cells and triggers an anti-phagocytic "don't eat me" signal when bound by the inhibitory signal regulatory protein α (SIRPα) expressed on macrophages. While CD47 blockade can mitigate tumor growth, many CD47 blockers also bind to red blood cells (RBCs), leading to anemia. Maplirpacept (TTI-622, PF-07901801) is a CD47 blocking fusion protein consisting of a human SIRPα fused to an IgG4 Fc region and designed to limit binding to RBCs.

View Article and Find Full Text PDF

Transplantation is the standard treatment for end-stage kidney disease but carries with it a non-trivial risk of post-operative complication. There is a need for a continuous, real-time, not additionally invasive method of monitoring organ perfusion. We present an approach to allograft perfusion monitoring using a human kidney model using normothermic perfusion (EVNP) and custom spectroscopic optical reflectance probes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!