Positional cloning in maize (Zea mays subsp. mays, Poaceae).

Appl Plant Sci

Department of Biology, Brigham Young University, Provo, Utah 84602 USA.

Published: January 2015

Premise Of The Study: Positional (or map-based) cloning is a common approach to identify the molecular lesions causing mutant phenotypes. Despite its large and complex genome, positional cloning has been recently shown to be feasible in maize, opening up a diverse collection of mutants to molecular characterization. •

Methods And Results: Here we outline a general protocol for positional cloning in maize. While the general strategy is similar to that used in other plant species, we focus on the unique resources and approaches that should be considered when applied to maize mutants. •

Conclusions: Positional cloning approaches are appropriate for maize mutants and quantitative traits, opening up to molecular characterization the large array of genetic diversity in this agronomically important species. The cloning approach described should be broadly applicable to other species as more plant genomes become available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298233PMC
http://dx.doi.org/10.3732/apps.1400092DOI Listing

Publication Analysis

Top Keywords

positional cloning
16
cloning maize
8
molecular characterization
8
maize mutants
8
positional
5
maize
5
cloning
5
maize zea
4
zea mays
4
mays subsp
4

Similar Publications

Localization and Molecular Cloning of the Gene for Melatonin Synthesis in Pigs.

Int J Mol Sci

January 2025

State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

Melatonin is synthesized in multiple tissues and organs of pigs, and existing studies have shown the presence of the melatonin-synthesizing enzyme ASMT protein. However, the genomic information for the gene has been lacking. The aim of this study was to locate the genomic information of the gene in pigs using comparative genomics analysis and then obtain the coding region information through molecular cloning.

View Article and Find Full Text PDF

The Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) is a multidomain protein consisting of two protein-protein interaction domains, the Src homology 2 (SH2) domain, and the proline-rich region (PRR), as well as three phosphoinositide-binding domains, the pleckstrin homology-like (PHL) domain, the 5-phosphatase (5PPase) domain, and the C2 domain. SHIP1 is commonly known for its involvement in the regulation of the PI3K/AKT signaling pathway by dephosphorylation of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P) at the D5 position of the inositol ring. However, the functional role of each domain of SHIP1 for the regulation of its enzymatic activity is not well understood.

View Article and Find Full Text PDF

Carcinogenesis encompasses processes that lead to increased mutation rates, enhanced cellular division (tumour growth), and invasive growth. Colorectal cancer (CRC) carcinogenesis in carriers of pathogenic APC (path_APC) and pathogenic mismatch repair gene (path_MMR) variants is initiated by a second hit affecting the corresponding wild-type allele. In path_APC carriers, second hits result in the development of multiple adenomas, with CRC typically emerging after an additional 20 years.

View Article and Find Full Text PDF

Serpins (serine protease inhibitors) constitute a superfamily of proteins with functional diversity and unusual conformational flexibility. In insects, serpins act as multiple inhibitors, by forming inactive acyl-enzyme complexes, in regulating Spätzles activation, phenoloxidases (POs) activity, and other cytokines. In this study, we present the cloning and characterization of Octodonta nipae serpin2 (OnSPN2), a 415 residues protein homologous to Tenebrio molitor 42Dd-like.

View Article and Find Full Text PDF

Evolution and Functional Diversification of Serine Racemase Homologs in Bacteria.

J Mol Evol

January 2025

Department of Plant and Soil Sciences, 311 Plant Science Building, University of Kentucky, Lexington, KY, 40546-0312, USA.

Amino acid racemases catalyze the interconversion of L- and D-amino acids, maintaining intracellular levels of both D- and L-amino acids. While alanine and glutamate racemases are widespread in bacteria, serine racemase (SerR) is predominantly found in animals. Recently, homologs of animal SerR were reported in some bacterial genomes, but their evolutionary distribution and functional roles remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!