This work describes zinc(II)-catalyzed hydrative aldol reactions of 2-en-1-ynamides with aldehydes and water to afford branched aldol products regio- and stereoselectively. The anti and syn selectivity can be modulated by the sizes of sulfonamides to yield E- and Z-configured zinc(II) dienolates selectively. This new reaction leads to enantiopure aldol products by using a cheap chiral sulfonamide. The mechanistic analysis reveals that the sulfonamide amides of the substrates can trap a released proton to generate dual acidic sites to activate a carbonyl allylation reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201411689DOI Listing

Publication Analysis

Top Keywords

aldol products
12
hydrative aldol
8
aldol reactions
8
reactions 2-en-1-ynamides
8
2-en-1-ynamides aldehydes
8
aldehydes water
8
branched aldol
8
products regio-
8
regio- stereoselectively
8
aldol
5

Similar Publications

Aldol reactions are one of the most fundamental organic reactions involving the formation of carbon-carbon bonds that are commonly used in the synthesis of complex molecules through the condensation of an enol or enolate with a carbonyl group. The aldol reaction of thiohydantoin derivatives with benzaldehyde starts with hydrogen removal from C5 by lithium diisopropylamide (LDA) to form the enolate. Benzaldehyde adds to the enolate either at the less or more hindered site.

View Article and Find Full Text PDF

Utilizing enzymes as biocatalysts, an alternative strategy has been developed for the highly enantioselective synthesis of chiral 2,3-dihydrobenzofuran (2,3-DHB) esters via the dynamic kinetic resolution of 2,3-dihydro-3-benzofuranols, which are generated from an intramolecular Aldol reaction. This protocol provides easy access to a series of 2,3-DHB ester derivatives, prodrugs, and allows for functional group transformations. Biological evaluation also indicates that some of the products exhibit potent anti-inflammatory activity.

View Article and Find Full Text PDF

One-Pot Production of Cinnamonitriles from Lignin β-O-4 Segments Induced by Selective Oxidation of the γ-OH Group.

J Org Chem

December 2024

CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

The construction of N-containing aromatic compounds from lignin is of great importance to expanding the boundary of the biorefinery and meeting the demand for value-added biorefinery. However, it remains a huge challenge due to the complex lignin structure and the incompatible catalysis for C-O/C-C bond cleavage and C-N formation. Herein, sustainable synthesis of cinnamonitrile derivatives from lignin β-O-4 model compounds in the presence of 2,2,6,6-tetramethylpiperidine oxide (TEMPO), (diacetoxyiodo)benzene (BAIB), and a strong base has been achieved in a one-pot, two-step fashion under transition-metal-free conditions.

View Article and Find Full Text PDF
Article Synopsis
  • - Vinylene-linked COFs are promising materials for photocatalysis due to their structured design and stability, but their performance is limited by issues with exciton binding energy and charge dissociation efficiency.
  • - To tackle this, researchers incorporated complementary donor-acceptor pairs within the COF framework, enhancing charge transfer and reducing recombination, leading to the synthesis of TMT-BT-COF and TMT-TT-COF.
  • - These modified COFs showed impressive catalytic activity, achieving over 92% conversion and 90% selectivity in converting styrene to benzaldehyde, and could also catalyze the epoxidation of styrene in water with notable selectivity.
View Article and Find Full Text PDF

Aldehydes have been proposed as important precursor species in new particle formation (NPF). Although formaldehyde (CHO) has minimal direct involvement in sulfuric acid (HSO) and water nucleation, it remains unclear whether its atmospheric aldol condensation product, hydroxyacetaldehyde (CHO), one of the simplest bifunctional oxygenated volatile organic compounds (OVOCs), plays a role in NPF. This study investigates both the aldol condensation of CHO and its role in NPF involving HSO and CHO through quantum chemical calculations and atmospheric cluster dynamics modeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!