Phosphoinositide 3-OH kinase (PI3K) regulates a number of developmental and physiologic processes in skeletal muscle; however, the contributions of individual PI3K p110 catalytic subunits to these processes are not well-defined. To address this question, we investigated the role of the 110-kDa PI3K catalytic subunit β (p110β) in myogenesis and metabolism. In C2C12 cells, pharmacological inhibition of p110β delayed differentiation. We next generated mice with conditional deletion of p110β in skeletal muscle (p110β muscle knockout [p110β-mKO] mice). While young p110β-mKO mice possessed a lower quadriceps mass and exhibited less strength than control littermates, no differences in muscle mass or strength were observed between genotypes in old mice. However, old p110β-mKO mice were less glucose tolerant than old control mice. Overexpression of p110β accelerated differentiation in C2C12 cells and primary human myoblasts through an Akt-dependent mechanism, while expression of kinase-inactive p110β had the opposite effect. p110β overexpression was unable to promote myoblast differentiation under conditions of p110α inhibition, but expression of p110α was able to promote differentiation under conditions of p110β inhibition. These findings reveal a role for p110β during myogenesis and demonstrate that long-term reduction of skeletal muscle p110β impairs whole-body glucose tolerance without affecting skeletal muscle size or strength in old mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355529 | PMC |
http://dx.doi.org/10.1128/MCB.00550-14 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Wuhan University College of Chemistry and Molecular Sciences, Bayi Road 299, Wuhan, CHINA.
Real-time monitoring of reactive oxygen and nitrogen species (RONS) in skeletal muscle provides crucial insights into the cause-and-effect relationships between physical activity and health benefits. However, the dynamic production of exercise-induced RONS remains poorly explored, due to the lack of sensing tools that can conform to soft skeletal muscle while monitor RONS release during exercise. Here we introduce dual flexible sensors via twisting carbon nanotubes into helical bundles of fibers and subsequent assembling electrochemical sensing components.
View Article and Find Full Text PDFFASEB J
December 2024
Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan.
Flavan-3-ols (FL) are poorly bioavailable astringent polyphenols that induce hyperactivation of the sympathetic nervous system. The aim of this study was to investigate the effects of repeated oral administration of FL on mice hindlimb skeletal muscle using immunohistochemical techniques. C57BL/6J male mice were orally administered 50 mg/kg of FL for a period of 2 weeks, and bromideoxyuridine (BrdU) was administered intraperitoneally 3 days prior to the dissection.
View Article and Find Full Text PDFMuscle Nerve
December 2024
AMRA Medical AB, Linköping, Sweden.
Introduction/aims: Improved methodologies to monitor the progression of Duchenne muscular dystrophy (DMD) are needed, especially in the context of clinical trials. We report changes in muscle magnetic resonance imaging (MRI) parameters in participants with DMD, including changes in lean muscle volume (LMV), muscle fat fraction (MFF), and muscle fat infiltration (MFI) and their relationship to changes in functional parameters.
Methods: MRI data were obtained as part of a clinical study (NCT02310763) of domagrozumab, an antibody-targeting myostatin that negatively regulates skeletal muscle mass.
Muscle Nerve
December 2024
Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
Introduction And Aims: Mitochondrial myopathies are rare genetic disorders for which no effective treatment exists. We previously showed that the pharmacological cyclophilin inhibitor cyclosporine A (CsA) extends the lifespan of fast-twitch skeletal muscle-specific mitochondrial transcription factor A knockout (Tfam KO) mice, lacking the ability to transcribe mitochondrial DNA and displaying lethal mitochondrial myopathy. Our present aim was to assess whether the positive effect of CsA was associated with improved in vivo mitochondrial energy production.
View Article and Find Full Text PDFGeneration of induced pluripotent cells (hiPSCs)-derived skeletal muscle progenitor cells (SMPCs) holds great promise for regenerative medicine for skeletal muscle wasting diseases, as for example Duchenne Muscular Dystrophy (DMD). Multiple approaches, involving ectopic expression of key regulatory myogenic genes or small molecules cocktails, have been described by different groups to obtain SMPC towards cell-transplantation as a therapeutic approach to skeletal muscle diseases. However, hiPSCs-derived SMPC generated using transgene-free protocols are usually obtained in a low amount and resemble a more embryonal/fetal stage of differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!