Climate-driven extinctions shape the phylogenetic structure of temperate tree floras.

Ecol Lett

Section for Ecoinformatics & Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark; Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK.

Published: March 2015

When taxa go extinct, unique evolutionary history is lost. If extinction is selective, and the intrinsic vulnerabilities of taxa show phylogenetic signal, more evolutionary history may be lost than expected under random extinction. Under what conditions this occurs is insufficiently known. We show that late Cenozoic climate change induced phylogenetically selective regional extinction of northern temperate trees because of phylogenetic signal in cold tolerance, leading to significantly and substantially larger than random losses of phylogenetic diversity (PD). The surviving floras in regions that experienced stronger extinction are phylogenetically more clustered, indicating that non-random losses of PD are of increasing concern with increasing extinction severity. Using simulations, we show that a simple threshold model of survival given a physiological trait with phylogenetic signal reproduces our findings. Our results send a strong warning that we may expect future assemblages to be phylogenetically and possibly functionally depauperate if anthropogenic climate change affects taxa similarly.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.12409DOI Listing

Publication Analysis

Top Keywords

phylogenetic signal
12
evolutionary history
8
history lost
8
climate change
8
phylogenetic
5
extinction
5
climate-driven extinctions
4
extinctions shape
4
shape phylogenetic
4
phylogenetic structure
4

Similar Publications

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Streptococcus dysgalactiae (S. dysgalactiae ) is a common pathogen of humans and various animals. However, the phylogenetic position of animal S.

View Article and Find Full Text PDF

The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band.

View Article and Find Full Text PDF

Whole genome sequencing characterization of Clostridioides difficile from Bulgaria during the COVID-19 pandemic.

Diagn Microbiol Infect Dis

January 2025

National Reference Laboratory of Control and Monitoring of Antibiotic Resistance (NRL-CMAR), Department Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), 26 Yanko Sakazov Blvd., Sofia, Bulgaria.

Increased incidence of Clostridioides difficile infections were documented in Bulgarian hospitals during COVID-19. WGS was performed on 39 isolates from seven hospitals during 2015-2022. Antimicrobial resistance and toxin genes were inferred from genomes.

View Article and Find Full Text PDF

Rhodothalassium (Rts.) salexigens is a halophilic purple nonsulfur bacterium and the sole species in the genus Rhodothalassium, which is itself the sole genus in the family Rhodothalassiaceae and sole family in the order Rhodothalassiales (class Alphaproteobacteria). The genome of this phylogenetically unique phototroph comprises 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!