A short scalable route to (-)-α-kainic acid using Pt-catalyzed direct allylic amination.

Chemistry

Graduate School of Pharmaceutical Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582 (Japan) http://green.phar.kyushu-u.ac.jp.

Published: March 2015

An increased supply of scarce or inaccessible natural products is essential for the development of more sophisticated pharmaceutical agents and biological tools, and thus the development of atom-economical, step-economical and scalable processes to access these natural products is in high demand. Herein we report the development of a short, scalable total synthesis of (-)-α-kainic acid, a useful compound in neuropharmacology that is, however, limited in supply from natural resources. The synthesis features sequential platinum-catalyzed direct allylic aminations and thermal ene-cyclization, enabling the gram-scale synthesis of (-)-α-kainic acid in six steps and 34% overall yield.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201406557DOI Listing

Publication Analysis

Top Keywords

--α-kainic acid
12
short scalable
8
direct allylic
8
natural products
8
synthesis --α-kainic
8
scalable route
4
route --α-kainic
4
acid pt-catalyzed
4
pt-catalyzed direct
4
allylic amination
4

Similar Publications

Purpose Of Review: Metabolic dysfunction associated steatotic liver disease (MASLD) is increasing throughout the world, affecting nearly one in three individuals. Kidney stone disease, which is also increasing, is associated with MASLD. Common risk factors for both, including obesity, diabetes, dyslipidemia, hypertension, and metabolic syndrome, are likely drivers of this association.

View Article and Find Full Text PDF

Despite its importance in understanding biology and computer-aided drug discovery, the accurate prediction of protein ionization states remains a formidable challenge. Physics-based approaches struggle to capture the small, competing contributions in the complex protein environment, while machine learning (ML) is hampered by the scarcity of experimental data. Here, we report the development of p ML (KaML) models based on decision trees and graph attention networks (GAT), exploiting physicochemical understanding and a new experiment p database (PKAD-3) enriched with highly shifted p's.

View Article and Find Full Text PDF

Ultra-Early Hematoma Expansion Is Associated With Ongoing Hematoma Growth and Poor Functional Outcome.

Stroke

January 2025

Departments of Medicine and Neurology, Melbourne Brain Centre @ The Royal Melbourne Hospital, University of Melbourne, AUSTRALIA.

There is limited data on ultra-early hematoma growth dynamics and its clinical relevance in primary intracerebral hemorrhage (ICH). We aimed to estimate the incidence of hematoma expansion (HE) within the hyperacute period of ICH, describe hematoma dynamics over time, investigate the associations between ultra-early HE and clinical outcomes after ICH, and assess the effect of tranexamic acid on ultra-early HE. We performed a planned secondary analysis of the STOP-MSU international multicenter randomized controlled trial.

View Article and Find Full Text PDF

XOR-Derived ROS in Tie2-Lineage Cells Including Endothelial Cells Promotes Aortic Aneurysm Progression in Marfan Syndrome.

Arterioscler Thromb Vasc Biol

January 2025

Department of Cardiovascular Medicine, The University of Tokyo, Bunkyo-ku, Japan. (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.).

Background: Marfan syndrome (MFS) is an inherited disorder caused by mutations in the gene encoding fibrillin-1, a matrix component of extracellular microfibrils. The main cause of morbidity and mortality in MFS is thoracic aortic aneurysm and dissection, but the underlying mechanisms remain undetermined.

Methods: To elucidate the role of endothelial XOR (xanthine oxidoreductase)-derived reactive oxygen species in aortic aneurysm progression, we inhibited in vivo function of XOR either by endothelial cell (EC)-specific disruption of the gene or by systemic administration of an XOR inhibitor febuxostat in MFS mice harboring the missense mutation p.

View Article and Find Full Text PDF

Rapid and accurate methods for tracing and identifying the origin of lamb are crucial for ensuring food authenticity and quality. This study developed a precise traceability method to determine the origin of lamb by integrating rapid evaporative ionization mass spectrometry (REIMS) with multivariate statistical analysis. Lamb samples from Xilin Gol, Ordos, and Hulun Buir ranches were identified by REIMS fingerprinting within 1 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!