Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using Box Behnken design.

Daru

Department of Pharmaceutics, Indian Institute of Technology, Banaras Hindu University (IIT-BHU), Varanasi, 221 005, UP, India.

Published: January 2015

Background: The objective of the study was to formulate and to investigate the combined influence of 3 independent variables in the optimization of Polymeric lipid hybrid nanoparticles (PLHNs) (Lipomer) containing hydrophobic antifungal drug Itraconazole and to improve intestinal permeability.

Method: The Polymeric lipid hybrid nanoparticle formulation was prepared by the emulsification solvent evaporation method and 3 factor 3 level Box Behnken statistical design was used to optimize and derive a second order polynomial equation and construct contour plots to predict responses. Biodegradable Polycaprolactone, soya lecithin and Poly vinyl alcohol were used to prepare PLHNs. The independent variables selected were lipid to polymer ratio (X1) Concentration of surfactant (X2) Concentration of the drug (X3).

Result: The Box-Behnken design demonstrated the role of the derived equation and contour plots in predicting the values of dependent variables for the preparation and optimization of Itraconazole PLHNs. Itraconazole PLHNs revealed nano size (210 ± 1.8 nm) with an entrapment efficiency of 83 ± 0.6% and negative zeta potential of -11.7 mV and also enhance the permeability of itraconazole as the permeability coefficient (Papp) and the absorption enhancement ratio was higher.

Conclusion: The tunable particle size, surface charge, and favourable encapsulation efficiency with a sustained drug release profile of PLHNs suggesting that it could be promising system envisioned to increase the bioavailability by improving intestinal permeability through lymphatic uptake, M cell of payer's patch or paracellular pathway which was proven by confocal microscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312448PMC
http://dx.doi.org/10.1186/s40199-014-0087-0DOI Listing

Publication Analysis

Top Keywords

polymeric lipid
12
lipid hybrid
12
optimization itraconazole
8
hybrid nanoparticles
8
box behnken
8
independent variables
8
contour plots
8
itraconazole plhns
8
itraconazole
5
plhns
5

Similar Publications

Cholesterol-terminated cationic lipidated oligomers (CLOs) as a new class of antifungals.

J Mater Chem B

January 2025

Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.

Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.

View Article and Find Full Text PDF

Introduction: HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin.

View Article and Find Full Text PDF

Comprehensive Analysis of Metabolic Changes in Mice Exposed to Corilagin Based on GC-MS Analysis.

Drug Des Devel Ther

January 2025

Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, People's Republic of China.

Background: Corilagin is widely distributed in various medicinal plants. In recent years, numerous pharmacological activities of Corilagin have been reported, including anti-inflammatory, antiviral, hepatoprotective, anti-tumor, and anti-fibrosis effects. However, there is still a need for systematic metabolomics analysis to further elucidate its mechanisms of action.

View Article and Find Full Text PDF

Introduction: Wound treatment is a significant health burden in any healthcare system, which requires proper management to minimize pain and prevent bacterial infections that can complicate the wound healing process.

Rationale: There is a need to develop innovative therapies to accelerate wound healing cost-effectively. Herein, two polymer-based nanofibrous systems were developed using poly-lactic-co-glycolic-acid (PLGA) and polyvinylpyrrolidone (PVP) loaded with a combination of an antibiotic (Fusidic acid, FA) and a local anesthetic (Lidocaine, LDC) via electrospinning technique for an expedited healing process by preventing bacterial infections while reducing the pain sensation.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!