Rapid and controlled vascularization within biomaterials is essential for many applications in regenerative medicine. The extent of vascularization is influenced by a number of factors, including scaffold architecture. While properties such as pore size and total porosity have been studied extensively, the importance of controlling the interconnectivity of pores has received less attention. A sintering method was used to generate hydrogel scaffolds with controlled pore interconnectivity. Poly(methyl methacrylate) microspheres were used as a sacrificial agent to generate porous poly(ethylene glycol) diacrylate hydrogels with interconnectivity varying based on microsphere sintering conditions. Interconnectivity levels increased with sintering time and temperature with resultant hydrogel structure showing agreement with template structure. Porous hydrogels with a narrow pore size distribution (130-150 μm) and varying interconnectivity were investigated for their ability to influence vascularization in response to gradients of platelet-derived growth factor-BB (PDGF-BB). A rodent subcutaneous model was used to evaluate vascularized tissue formation in the hydrogels in vivo. Vascularized tissue invasion varied with interconnectivity. At week 3, higher interconnectivity hydrogels had completely vascularized with twice as much invasion. Interconnectivity also influenced PDGF-BB transport within the scaffolds. An agent-based model was used to explore the relative roles of steric and transport effects on the observed results. In conclusion, a technique for the preparation of hydrogels with controlled pore interconnectivity has been developed and evaluated. This method has been used to show that pore interconnectivity can independently influence vascularization of biomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915224 | PMC |
http://dx.doi.org/10.1089/ten.TEC.2014.0454 | DOI Listing |
Sci Rep
January 2025
Multifunctional Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.
The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.
View Article and Find Full Text PDFBone
December 2024
College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China.
Bone tissue is a biological composite material with a complex hierarchical structure that could continuously adjust its internal structure to adapt to the alterations in the external load environment. The fluid flow within bone is the main route of osteocyte metabolism, and the pore pressure as well as the fluid shear stress generated by it are important mechanical stimuli perceived by osteocytes. Owing to the irregular multiscale structure of bone tissue, the fluid stimulation that lacunar-canalicular network (LCN) in different regions of the tissue underwent remained unclear.
View Article and Find Full Text PDFACS Omega
December 2024
School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.
Hot dry rock (HDR) is a novel green, low-carbon energy. Its development requires the creation of fracture channels in deep thermal reservoirs. Traditional methods such as hydraulic fracturing have limited effectiveness in reservoir stimulation, so a method of liquid nitrogen cold shock was proposed.
View Article and Find Full Text PDFBiomed Mater
December 2024
Department of Paper Technology, Indian Institute of Technology Roorkee, Department of Paper Technology, IIT Roorkee, Saharanpur, 247001, INDIA.
The advancement in the arena of bone tissue engineering persuades us to develop novel nanocomposite scaffolds in order to improve antibacterial, osteogenic, and angiogenic properties that show resemblance to natural bone extracellular matrix. Here, we focused on the development of novel zinc-doped hydroxyapatite (ZnHAP) nanoparticles (1, 2 and 3 wt%; size: 50-60 nm) incorporated chitosan-gelatin nanocomposite scaffold, with an interconnected porous structure. The addition of ZnHAP nanoparticles decreases the pore size (~30 µm) of the chitosan gelatin scaffold.
View Article and Find Full Text PDFSmall Methods
December 2024
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
3D covalent-organic framework (3D COF) membranes have unique features such as smaller pore sizes and more interconnected networks compared with 2D COF counterparts. However, the complicated and unmanageable fabrication hinders their rapid development. Molecular simulation, which can efficiently explore the structure-performance relationship of membranes, holds great promise in accelerating the development of 3D COF membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!