Discovery of a novel general anesthetic chemotype using high-throughput screening.

Anesthesiology

From the Department of Anesthesiology and Critical Care (A.R.M.-W., W.B., R.G.E.) and Department of Pharmacology (B.P.W.), University of Pennsylvania, Philadelphia, Pennsylvania; National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (G.R., W.A.L., A.S., A.J., D.J.M.); and College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania (D.F.L.).

Published: February 2015

Background: The development of novel anesthetics has historically been a process of combined serendipity and empiricism, with most recent new anesthetics developed via modification of existing anesthetic structures.

Methods: Using a novel high-throughput screen employing the fluorescent anesthetic 1-aminoanthracene and apoferritin as a surrogate for on-pathway anesthetic protein target(s), we screened a 350,000 compound library for competition with 1-aminoanthracene-apoferritin binding. Hit compounds meeting structural criteria had their binding affinities for apoferritin quantified with isothermal titration calorimetry and were tested for γ-aminobutyric acid type A receptor binding using a flunitrazepam binding assay. Chemotypes with a strong presence in the top 700 and exhibiting activity via isothermal titration calorimetry were selected for medicinal chemistry optimization including testing for anesthetic potency and toxicity in an in vivo Xenopus laevis tadpole assay. Compounds with low toxicity and high potency were tested for anesthetic potency in mice.

Results: From an initial chemical library of more than 350,000 compounds, we identified 2,600 compounds that potently inhibited 1-aminoanthracene binding to apoferritin. A subset of compounds chosen by structural criteria (700) was successfully reconfirmed using the initial assay. Based on a strong presence in both the initial and secondary screens the 6-phenylpyridazin-3(2H)-one chemotype was assessed for anesthetic activity in tadpoles. Medicinal chemistry efforts identified four compounds with high potency and low toxicity in tadpoles, two were found to be effective novel anesthetics in mice.

Conclusion: The authors demonstrate the first use of a high-throughput screen to successfully identify a novel anesthetic chemotype and show mammalian anesthetic activity for members of that chemotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300529PMC
http://dx.doi.org/10.1097/ALN.0000000000000505DOI Listing

Publication Analysis

Top Keywords

anesthetic
9
anesthetic chemotype
8
novel anesthetics
8
high-throughput screen
8
structural criteria
8
isothermal titration
8
titration calorimetry
8
strong presence
8
medicinal chemistry
8
anesthetic potency
8

Similar Publications

This study assesses the effect of carotid sinus blockade applied with a local anesthetic on hemodynamic parameters during carotid endarterectomy (CEA) operations performed under general anesthesia. The medical records of patients who underwent CEA under general anesthesia between January 2020 and December 2022, were retrospectively reviewed. It was recorded whether the patients received carotid sinus block with 2 mL of 2% prilocaine.

View Article and Find Full Text PDF

Rationale: Local anesthesia is a widely used technique for emergency wound closure, with lidocaine among the most commonly employed local anesthetics. Allergic reactions to lidocaine are rare, with anaphylaxis being even more uncommon.

Patient Concerns And Diagnosis: This report describes a 72-year-old male patient who presented with a right foot injury and underwent wound suturing under lidocaine local anesthesia.

View Article and Find Full Text PDF

Objective: The current neurosurgical treatment for intraventricular hemorrhage (IVH) of prematurity resulting in posthemorrhagic hydrocephalus (PHH) seeks to reduce intracranial pressure with temporary and then permanent CSF diversion. In contrast, neuroendoscopic lavage (NEL) directly addresses the intraventricular blood that is hypothesized to damage the ependyma and parenchyma, leading to ventricular dilation and hydrocephalus. The authors sought to determine the feasibility of NEL in PHH.

View Article and Find Full Text PDF

Impact of under-assisted ventilation on diaphragm function and structure in a porcine model.

Anesthesiology

January 2025

Department of Anesthesiology and Critical Care Medicine B (DAR B), Saint-Eloi Hospital, University Teaching Hospital of Montpellier, 80 avenue Augustin Fliche, 34295 Montpellier, France.

Background: Long-term controlled mechanical ventilation (CMV) in intensive care unit (ICU) induces ventilatory-induced-diaphragm-dysfunction (VIDD). The transition from CMV to assisted mechanical ventilation is a challenge that requires clinicians to balance over-assistance and under-assistance. While the effects of over-assistance on the diaphragm are well known, we aimed to assess the impact of under-assistance on diaphragm function and structure in piglet model with pre-existing VIDD (after long-term CMV) or without VIDD (short-term CMV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!