Methane (CH) emissions from enteric fermentation by livestock account for about 2.1% of U.S. greenhouse gas emissions, with beef and dairy cattle being the most significant sources. A better understanding of CH emissions from beef cattle feedyards can help build more accurate emission inventories, improve predictive models, and meet potential regulatory requirements. Our objective was to quantify CH emissions during winter and summer at a typical beef cattle feedyard on the southern High Plains in Texas. Methane emissions were quantified over 32 d in winter and 44 d in summer using open-path lasers and inverse dispersion analysis. Methane per capita emission rate (PCER) ranged from 71 to 118 g animal d in winter and from 70 to 130 g animal d in summer. Mean CH PCER was similar in January, February, and May (average, 85.0 ± 0.95 g animal d) and increased to 93.4 g animal d during the June-July period. This increase coincided with increased dietary fiber. Methane loss ranged from 9.2 to 11.4 g CH kg dry matter intake, with lower values during winter. Gross energy intake (GEI) ranged from 135.2 to 164.5 MJ animal d, and CH energy loss ranged from 4.5 to 4.9 MJ animal d. Fraction of GEI lost as CH (Y) averaged 2.8% in winter, 3.2% in summer, and 3.0% overall. These values confirm the Y value currently recommended by the Intergovernmental Panel on Climate Change for Tier 2 estimates of enteric CH from feedlot fed cattle.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2013.09.0386DOI Listing

Publication Analysis

Top Keywords

methane emissions
12
emissions beef
12
beef cattle
12
winter summer
12
cattle feedyard
8
southern high
8
high plains
8
plains texas
8
texas methane
8
loss ranged
8

Similar Publications

"Low Carbon Brazilian Beef": How is it perceived by Brazilians?

Food Res Int

January 2025

Embrapa Agroindústria de Alimentos, Av. das Américas, 29501, CEP 23020-470 Rio de Janeiro, Brazil. Electronic address:

"Low Carbon Brazilian Beef" (LCBB) represents a Brazilian concept brand that certifies livestock systems adopting specific technical guidelines to minimize methane gas emissions from cattle. Understanding consumers' perceptions of this brand concept can help develop strategies to promote its consumption. The objective of this study was to investigate the perception of Brazilian consumers living in the state of Rio de Janeiro regarding the LCBB through free word association and to evaluate the influence of socio-demographic variables, green consumption values and frequency of beef consumption in associations.

View Article and Find Full Text PDF

Methane emissions from ruminant digestion contribute significantly to global anthropogenic greenhouse gas emissions. Members of the phylum Rhodophyta (red algae), particularly Asparagopsis sp., have shown promising results in reducing methane emissions in ruminants, due to their high content of halogenated methane analog compounds.

View Article and Find Full Text PDF

Given global warming and the growing dairy population, heat stress in dairy herds is of increasing concern. During heat stress, dairy cows suffer from compromised productivity and animal welfare in terms of reduced feed intake and milk production, decreased reproductive performance, and generally increased risk of health problems. These effects and their interactions are complex and are usually quantified separately, and thereby a comprehensive understanding of the herd-level performance is missing.

View Article and Find Full Text PDF

Analysis of microbial methane oxidation capacity of landfill soil cover using quorum sensing.

Environ Res

January 2025

Department of Civil and Smart Construction Engineering, Shantou University, Shantou, Guangdong 515063, China. Electronic address:

Landfill gas (LFG) has become the second-largest anthropogenic source of methane (CH) emissions globally. CH is the second most significant greenhouse gas after carbon dioxide (CO), thus it is crucial to mitigate the methane emission of landfills. The soil in landfill cover layers is rich in methane-oxidizing bacteria (MOB), which use CH as their sole carbon and energy source.

View Article and Find Full Text PDF

Combination of anaerobic digestion and sludge biochar for bioenergy conversion: Estimation and evaluation of energy production, CO emission, and cost analysis.

J Environ Manage

January 2025

Bioenergy Research Institute - IPBEN, UNESP, Institute of Chemistry, Araraquara, SP, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Campus Araraquara, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, 14800-900, Araraquara, SP, Brazil. Electronic address:

Waste-to-energy technologies involve the conversion of several wastes to useful energy forms like biogas and biochar, which include biological and thermochemical processes, as well as the combination of both systems. Assessing the economic and environmental impacts is an important step to integrate sustainability and economic viability at anaerobic digestion systems and its waste management. Energy production, CO emissions, cost analysis, and an overall process evaluation were conducted, relying on findings from both laboratory and pilot-scale experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!