Nitrogen (N) is a dominant macronutrient in many river-dominated coastal systems, and excess concentrations can drive eutrophication, the effects of which can include hypoxia and algal blooms. The Yangtze River in China transports a large amount of dissolved inorganic N. Therefore, it is important to understand the role of the marsh and mudflat areas within the estuary on processing this exogenous N load. In situ dissolved inorganic nitrogen (DIN) fluxes across the sediment-water interface were determined monthly at Chongming Island at two sites (a vegetated marsh and an unvegetated mudflat) and were compared with rates from a previously published laboratory incubation study by our research group. Results from the in situ study showed that NO flux rates comprised the major component of total DIN flux, ranging from 55 to 97%. No significant difference was observed in the N flux rates between the marsh and mudflat sites. Overall, sediment at both sites served as a sink of DIN from surface water with mean flux rates of -178 μmol m h and -165 μmol m h for the marsh and mudflat, respectively. In general, DIN flux rates were not significantly correlated with DIN concentrations and other measured parameters (temperature, dissolved oxygen, salinity, and pH) of surface water. The in situ measured fluxes of NO and NO in this study were not significantly different from those of our previous laboratory incubation ( > 0.05), whereas NH fluxes in situ were significantly lower than those from the laboratory core incubations ( < 0.05). This result suggests that caution should be used when extrapolating rates from laboratory incubation methods to the field because the rates might not be equivalent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2134/jeq2013.07.0300 | DOI Listing |
Biogeochemistry
January 2025
Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar.
Unlabelled: Blue carbon represents the organic carbon retained in marine coastal ecosystems. (an Arabic for "mudflats"), formed in tidal environments under arid conditions, have been proposed to be capable of carbon sequestrating. Despite the growing understanding of the critical role of blue carbon ecosystems, there is a current dispute about whether sabkhas around the Persian Gulf can contribute to carbon retention as a blue carbon ecosystem.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Mangrove ecosystem has attracted global attention as a hotspot for mercury (Hg) methylation. Although numerous biotic and abiotic parameters have been reported to influence methylmercury (MeHg) production in sediments, the key factors determining the elevated MeHg levels in mangrove wetlands have not been well addressed. In this study, Hg levels in the sediments from different habitats (mudflats, mangrove fringe, and mangrove interior) in the Futian mangrove wetland were investigated, aiming to characterize the predominant factors affecting the MeHg production and distinguish the key microbial taxa responsible for Hg methylation.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Biology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Department of Science, The Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK. Electronic address:
Heavy metal pollution is a growing environmental concern as it causes the degradation of wetlands by affecting the organisms at different trophic levels. Shorebirds typically feed on benthic invertebrates including polychaete worms, crustaceans and molluscs. Thus, the assessment of bioconcentration of heavy metals in shorebirds provides an insight into the extent of bioaccumulation of these hazardous metals in the upper trophic levels.
View Article and Find Full Text PDFNat Commun
November 2024
State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China.
Branching networks are key elements in natural landscapes and have attracted sustained research interest across the geosciences and numerous intersecting fields. The prevailing consensus has long held that branching networks are optimized and exhibit fractal properties adhering to power-law scaling relationships. However, tidal networks in coastal wetlands and mudflats exhibit scaling properties that defy conventional power-law descriptions, presenting a longstanding enigma.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region of China; Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of China. Electronic address:
Ecological functions of coastal wetlands are closely linked to microbiome that is affected by anthropogenic pollution, but related systematic research is rare. This study explored microbial community and physicochemical characteristics of sediments in three habitats, mudflat, mangrove and inter-tidal shrimp ponds (gei wai), in a Ramsar using 16S amplicon sequencing. Proteobacteria was the most abundant and Vibrio was detected in all habitats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!