In the southeastern United States, on-site wastewater treatment systems (OWTSs) are widely used for domestic wastewater treatment. The degree to which OWTSs represent consumptive water use has been questioned in Georgia. The goal of this study was to estimate the effect of OWTSs on streamflow in a gauged watershed in Gwinnett County, Georgia using the Soil and Water Assessment Tool (SWAT) watershed-scale model, which includes a new OWTS algorithm. Streamflow was modeled with and without the presence of OWTSs. The model was calibrated using data from 1 Jan. 2003 to 31 Dec. 2006 and validated from 1 Jan. 2007 to 31 Dec. 2010 using the auto-calibration tool SWAT-CUP 4. The daily and monthly streamflow Nash-Sutcliffe coefficients were 0.49 and 0.71, respectively, for the calibration period and 0.37 and 0.68, respectively, for the validation period, indicating a satisfactory fit. Analysis of water balance output variables between simulations showed a 3.1% increase in total water yield at the watershed scale and a 5.9% increase at the subbasin scale for a high-density OWTS area. The percent change in water yield between simulations was the greatest in dry years, implying that the influence of OWTSs on the water yield is greatest under drought conditions. Mean OWTS water use was approximately 5.7% consumptive, contrary to common assumptions by water planning agencies in Georgia. Results from this study may be used by OWTS users and by watershed planners to understand the influence of OWTSs on water quantity within watersheds in this region.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2013.05.0195DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
12
water yield
12
water
9
on-site wastewater
8
treatment systems
8
influence owtss
8
owtss water
8
owtss
6
quantifying contribution
4
contribution on-site
4

Similar Publications

vClean: assessing virus sequence contamination in viral genomes.

NAR Genom Bioinform

March 2025

Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.

Recent advancements in viral metagenomics and single-virus genomics have improved our ability to obtain the draft genomes of environmental viruses. However, these methods can introduce virus sequence contaminations into viral genomes when short, fragmented partial sequences are present in the assembled contigs. These contaminations can lead to incorrect analyses; however, practical detection tools are lacking.

View Article and Find Full Text PDF

Predicting per- and polyfluoroalkyl substances removal in pilot-scale granular activated carbon adsorbers from rapid small-scale column tests.

AWWA Water Sci

March 2024

Department of Civil, Construction, and Environmental Engineering, North, Carolina State University, Raleigh, North, Carolina, USA.

Per- and polyfluoroalkyl substances (PFAS) occur widely in drinking water, and consumption of contaminated drinking water is an important human exposure route. Granular activated carbon (GAC) adsorption can effectively remove PFAS from water. To support the design of GAC treatment systems, a rapid bench-scale testing procedure and scale-up approach are needed to assess the effects of GAC type, background water matrix, and empty bed contact time (EBCT) on GAC use rates.

View Article and Find Full Text PDF

Interfacial Water Regulation for Nitrate Electroreduction to Ammonia at Ultralow Overpotentials.

Adv Mater

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

Nitrate electroreduction is promising for achieving effluent waste-water treatment and ammonia production with respect to the global nitrogen balance. However, due to the impeded hydrogenation process, high overpotentials need to be surmounted during nitrate electroreduction, causing intensive energy consumption. Herein, a hydroxide regulation strategy is developed to optimize the interfacial HO behavior for accelerating the hydrogenation conversion of nitrate to ammonia at ultralow overpotentials.

View Article and Find Full Text PDF

Nanomaterials have been gaining interest due to their remarkable properties at the nanoscale. The surface area of particles becomes high at the nanoscale because of this virtue, they have been used in a bundle of applications like electronics, biomedical, agriculture, wastewater treatment, semiconductor industry, cosmetics, drug delivery, paints, and so forth. The morphology (size and shape) of nanomaterials plays an important role because each application requires the appropriate morphology for better performance.

View Article and Find Full Text PDF

Detection and identification of Naegleria species along with Naegleria fowleri in the tap water samples.

BMC Med Genomics

January 2025

Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.

Naegleria fowleri, the causative agent of Primary Amoebic Meningoencephalitis (PAM), is commonly found in warm freshwater environments and can enter the brain through nasal passages during activities like swimming or ablution. PAM has a high fatality rate, raising concerns about its global health impact. In Pakistan, particularly in Karachi, a significant number of cases have been reported, often with no history of recreational water exposure, but with regular ablution using tap water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!