AI Article Synopsis

  • The study explores how adding biochar to different soils affects the retention of specific bacteria (O157:H7 and Typhimurium) and microspheres.
  • Researchers found that biochar, particularly when pyrolyzed at 700°C, generally improved the retention of bacteria in fine sand, with pine chip biochar being the most effective.
  • It was determined that changes in bacterial retention were mainly due to how bacteria attached to surfaces rather than changes in survival or physical barriers, highlighting the importance of soil texture in these processes.

Article Abstract

The incorporation of biochar into soils has been proposed as a means to sequester carbon from the atmosphere. An added environmental benefit is that biochar has been shown to increase soil retention of agrochemicals, and recent research has indicated that biochar may be effective in increasing soil retention of bacteria. In this study we investigate the transport behavior of O157:H7, serovar Typhimurium, and carboxylated polystyrene microspheres in water-saturated column experiments for two soils (fine sand and sandy loam) amended with 2% poultry litter or pine chip biochars pyrolyzed at 350 and 700°C. Adding poultry litter biochar pyrolyzed at 350°C did not improve soil retention of either bacteria in fine sand and even facilitated their transport in sandy loam. Addition of either biochar pyrolyzed at 700°C generally improved retention of bacteria in fine sand, with the pine chip biochars being more effective in limiting their transport. Results from the column studies and auxiliary batch studies suggest that changes in cell retention after biochar amendments were likely due to changes in bacterial attachment in the column and not to physical straining or changes in survivability. We also found that changes in bacterial hydrophobicity after biochar amendments were generally correlated with changes in bacterial retention. The influence of biochar amendment in increasing retention of both bacteria was generally more pronounced in fine sand and indicates that soil texture affects the transport behavior of bacteria through biochar-amended soils.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2013.06.0236DOI Listing

Publication Analysis

Top Keywords

retention bacteria
16
fine sand
16
soil retention
12
changes bacterial
12
biochar-amended soils
8
biochar
8
transport behavior
8
sandy loam
8
poultry litter
8
pine chip
8

Similar Publications

Structural, psychological, and clinical barriers to HIV care engagement among adolescents and young adults living with HIV (AYAH) persist globally despite gains in HIV epidemic control. Phone-based peer navigation may provide critical peer support, increase delivery flexibility, and require fewer resources. Prior studies show that phone-based navigation and automated text messaging interventions improve HIV care engagement, adherence, and retention among AYAH.

View Article and Find Full Text PDF

Increasing evidence suggests that dysbiosis of gut microbiota exacerbates chronic kidney disease (CKD) progression. Curcumin (CUR) has been reported to alleviate renal fibrosis in animal models of CKD. However, the relationship between CUR and gut microbiome in CKD remains unclear.

View Article and Find Full Text PDF

Antiretroviral therapy (ART) improves the quality of life for those living with the human immunodeficiency virus type one (HIV-1). However, poor compliance reduces ART effectiveness and leads to immune compromise, viral mutations, and disease co-morbidities. Here we develop a drug formulation in which a lipid-based nanoparticle (LBNP) carrying rilpivirine (RPV) is decorated with the C-C chemokine receptor type 5 (CCR5) targeting peptide.

View Article and Find Full Text PDF

Algal-bacterial bioremediation of cyanide-containing wastewater in a continuous stirred photobioreactor.

World J Microbiol Biotechnol

January 2025

The Biotechnology Center, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.

This study reports the isolation and characterization of highly resistant bacterial and microalgal strains from an Egyptian wastewater treatment station to cyanide-containing compounds. The bacterial strain was identified as Bacillus licheniformis by 16S rRNA gene sequencing. The isolate removed up to 1 g L potassium cyanide, 3 g L benzonitrile, and 1 g L sodium salicylate when incubated as 10% v/v in MSM at 30 ℃.

View Article and Find Full Text PDF

Study of the release kinetics of Ethyl Lauroyl Arginate from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) active films.

Food Res Int

January 2025

Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy.

This study investigates the underexplored area of the release mechanism and kinetics of the antimicrobial Ethyl Lauroyl Arginate (LAE®) from an innovative active packaging system based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). We evaluated the impact of food simulants and temperatures on LAE® release, diffusion, and partition coefficients. Mathematical modeling was used to elucidate LAE® release kinetics, offering understanding of the release behaviour in food matrices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!