In situ methods for estimating water quality parameters would facilitate efforts in spatial and temporal monitoring, and optical reflectance sensing has shown potential in this regard, particularly for chlorophyll, suspended sediment, and turbidity. The objective of this research was to develop and evaluate relationships between hyperspectral remote sensing and lake water quality parameters-chlorophyll, turbidity, and N and P species. Proximal hyperspectral water reflectance data were obtained on seven sampling dates for multiple arms of Mark Twain Lake, a large man-made reservoir in northeastern Missouri. Aerial hyperspectral data were also obtained on two dates. Water samples were collected and analyzed in the laboratory for chlorophyll, nutrients, and turbidity. Previously reported reflectance indices and full-spectrum (i.e., partial least squares regression) methods were used to develop relationships between spectral and water quality data. With the exception of dissolved NH, all measured water quality parameters were strongly related ( ≥ 0.7) to proximal reflectance across all measurement dates. Aerial hyperspectral sensing was somewhat less accurate than proximal sensing for the two measurement dates where both were obtained. Although full-spectrum calibrations were more accurate for chlorophyll and turbidity than results from previously reported models, those previous models performed better for an independent test set. Because extrapolation of estimation models to dates other than those used to calibrate the model greatly increased estimation error for some parameters, collection of calibration samples at each sensing date would be required for the most accurate remote sensing estimates of water quality.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2014.02.0060DOI Listing

Publication Analysis

Top Keywords

water quality
24
remote sensing
12
hyperspectral remote
8
water
8
quality parameters
8
aerial hyperspectral
8
turbidity reported
8
measurement dates
8
sensing
7
quality
6

Similar Publications

The aim of this experiment was to investigate the effects of rumen fluid and molasses on the nutrient composition, fermentation quality, and microflora of Caragana korshinskii Kom. The trial included four treatments: a control group (CK) without additives and experimental groups supplemented with 7% rumen fluid (R), 4% molasses (M), and 7% rumen fluid + 4% molasses (RM). 15 days and 60 days of ensiling.

View Article and Find Full Text PDF

Land use change can significantly alter the proportion of soil aggregates, thereby influencing aggregate stability and distribution of soil organic carbon (SOC). However, there is minimal research on the variations in the distribution of soil aggregates, aggregate stability, and SOC in soil aggregates following land use change from farmland (FL) to forest and grassland in the Loess Plateau region of China. Select six land use patterns (farmland (FL), abandoned cropland (ACL), Medicago sativa (MS), natural grassland (NG), Picea asperata Mast.

View Article and Find Full Text PDF

Mangrove forests are increasingly recognized as vital blue carbon ecosystems due to their high carbon sequestration capacity, primarily through the accumulation of soil organic carbon (SOC). Recent research highlights that, in addition to SOC, dissolved inorganic carbon (DIC), particularly in the form of bicarbonate (HCO₃⁻), plays a crucial role in carbon sequestration by being exported from these ecosystems to adjacent coastal waters. This study aims to investigate the previously unexamined mechanisms behind bicarbonate production in mangrove soils.

View Article and Find Full Text PDF

The geochemical and chemical constituents of river water quality could be influenced by human activities and organic processes like water interacting with the lithogenic structure that the river flows through. Evaluating evidence based primary root of the predominant pollutant ions, their interactions as well as the factors controlling their dominance is crucial in studies regarding water environment and hydrology especially as most studies focus on theoretical methods. In order to understand the water cycle, safeguard surface water resources, and preserve the human environment, this study evaluated surface water hydro-chemical facies, quality dynamics, and portability in southern Nigeria using multivariate statistical approaches by analyzing selected hydro-chemical characteristics as indicators of pollution along the river during wet and dry seasons.

View Article and Find Full Text PDF

Reservoir-operation optimisation is a crucial aspect of water-resource development and sustainable water process management. This study addresses bi-objective optimisation problems by proposing a novel crossover evolution operator, known as the hybrid simulated binary and improved arithmetic crossover (SBAX) operator, based on the simulated binary cross (SBX) and arithmetic crossover operators, and applies it to the Non-dominated Sorting Genetic Algorithms-II (NSGA-II) algorithm to improve the algorithm. In particular, the arithmetic crossover operator can obtain an optimal solution more precisely within the solution space, whereas the SBX operator can explore a broader range of potential high-quality solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!