Copper (Cu) contamination to soil and water is a worldwide concern. Biochar has been suggested to remediate degraded soils. In this study, column leaching and chemical characterization were conducted to assess effects of biochar amendment on Cu immobilization and subsequent nutrient release in Cu-contaminated Alfisol and Spodosol. The results indicate that biochar is effective in binding Cu (30 and 41%, respectively, for Alfisol with and without spiked Cu; 36 and 43% for Spodosol) and reducing Cu leaching loss (from ∼47 to 10% for the Cu-spiked Alfisol and from 48 to 9% for the Cu-spiked Spodosol). Copper was likely retained on biochar surfaces through complexation, as suggested by Fourier-transform infrared spectra. Biochar amendment converts a portion of Cu from available pool to more stable forms, thus resulting in decreased activities of free Cu and increased activity of organic Cu complexes in leachate. Reduction of >0.45-μm solids and nanoparticles concentrations in leachate was also observed. In addition, biochar application rate was correlated negatively with P, Ca, Mg, Zn, Mn, and NH-N concentration ( < 0.05) but positively with K and Na concentration ( < 0.05) in leachates. These results documented the potential of biochar as an effective amendment for Cu immobilization and mitigation of leaching risk for some nutrients.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2014.05.0213DOI Listing

Publication Analysis

Top Keywords

biochar amendment
12
biochar
8
nutrient release
8
amendment immobilization
8
biochar effective
8
concentration 005
8
leaching
4
amendment leaching
4
leaching potential
4
potential copper
4

Similar Publications

Introduction: Response to fertilization with biochar in contaminated soils for forage crops lacks comprehensive understanding. This study delves into the role of biochar in enhancing soil pH and phosphorus (P) and potassium (K) availability for ryegrass () in clay and silt loam metal-contaminated soils.

Methods: Two pot experiments were conducted using switchgrass-derived biochar (SGB) and poultry litter-derived biochar (PLB) with varying biochar application rates: one without plants and the other with ryegrass.

View Article and Find Full Text PDF

Enhancing indigenous plant growth in metal(loid) contaminated soil using biochar.

Chemosphere

January 2025

Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea. Electronic address:

Soil around mines contaminated with metal(loid) is not suitable for growing plants and it is necessary to select indigenous plants with tolerance for metal(loid) and ameliorate metal toxicity in soil using soil amendments. Therefore, the purpose of this study was to improve the soil environment to make it suitable for plant growth by treating chicken manure derived-biochar in soil contaminated with arsenic (As), cadmium (Cd), and lead (Pb). Biochar application increased soil pH and significantly reduced bioavailable As, Cd and Pb, thereby lowering toxicity in plants.

View Article and Find Full Text PDF

Wheat, a staple food crop globally, faces the challenges of limited water resources and sustainable soil management practices. The pivotal elements of the current study include the integration of activated acacia biochar (AAB) in wheat cultivation under varying irrigation regimes (IR). A field trial was conducted in the Botanical Garden, University of the Punjab, Lahore during 2023-2024, designed as a split-split-plot arrangement with RCBD comprising three AAB levels (0T, 5T, and 10T, T = tons per hectare) three wheat cultivars (Dilkash-2020, Akbar-2019, and FSD-08) receiving five IR levels (100%, 80%, 70%, 60%, and 50% field capacity).

View Article and Find Full Text PDF

Large-scale restoration projects are an exciting and often untapped opportunity to use an experimental approach to inform ecosystem management and test ecological theory. In our $10M tidal marsh restoration project, we installed over 17,000 high marsh plants to increase cover and diversity, using these plantings in a large-scale experiment to test the benefits of clustering and soil amendments across a stress gradient. Clustered plantings have the potential to outperform widely spaced ones if plants alter conditions in ways that decrease stress for close neighbors.

View Article and Find Full Text PDF

Controlling As, Cd, and Pb bioaccumulation in rice under different levels of alternate wetting and drying irrigation with biochar amendment: A 3-year field study.

Chemosphere

January 2025

Área de Edafología y Química Agrícola, Facultad de Ciencias - IACYS, Universidad de Extremadura, Avda de Elvas s/n, Badajoz, 06071, Spain.

One challenging task to produce rice that comply with the increasing demanding regulations, is to reduce, simultaneously, grain bioaccumulation of As, Cd, and Pb. A 3-year field experiment was conducted in a Mediterranean environment, to evaluate the effects on As, Cd, and Pb bioaccumulation in rice grain, of the adoption of two levels of alternate wetting and drying (AWD) irrigation conditions: moderate and intensive (reflooding at -20 kPa and -70 kPa soil matric water potential, respectively), relative to the traditional permanent flood irrigation. Plots were prepared with or without a one-time holm oak biochar application (35 Mg ha), in the first year of the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!