OpenCMISS is an open-source modeling environment aimed, in particular, at the solution of bioengineering problems. OpenCMISS consists of two main parts: a computational library (OpenCMISS-Iron) and a field manipulation and visualization library (OpenCMISS-Zinc). OpenCMISS is designed for the solution of coupled multi-scale, multi-physics problems in a general-purpose parallel environment. CellML is an XML format designed to encode biophysically based systems of ordinary differential equations and both linear and non-linear algebraic equations. A primary design goal of CellML is to allow mathematical models to be encoded in a modular and reusable format to aid reproducibility and interoperability of modeling studies. In OpenCMISS, we make use of CellML models to enable users to configure various aspects of their multi-scale physiological models. This avoids the need for users to be familiar with the OpenCMISS internal code in order to perform customized computational experiments. Examples of this are: cellular electrophysiology models embedded in tissue electrical propagation models; material constitutive relationships for mechanical growth and deformation simulations; time-varying boundary conditions for various problem domains; and fluid constitutive relationships and lumped-parameter models. In this paper, we provide implementation details describing how CellML models are integrated into multi-scale physiological models in OpenCMISS. The external interface OpenCMISS presents to users is also described, including specific examples exemplifying the extensibility and usability these tools provide the physiological modeling and simulation community. We conclude with some thoughts on future extension of OpenCMISS to make use of other community developed information standards, such as FieldML, SED-ML, and BioSignalML. Plans for the integration of accelerator code (graphical processing unit and field programmable gate array) generated from CellML models is also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4283644 | PMC |
http://dx.doi.org/10.3389/fbioe.2014.00079 | DOI Listing |
Nutrients
November 2024
Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, "Oliveto Citra Hospital", 84124 Salerno, Italy.
Background/objectives: The study aim was to evaluate the association between UPF consumption and semen quality in a sample of healthy young men in Italy.
Methods: A cross-sectional analysis was carried out using data from 126 participants (mean age ± SD 20.0 ± 1.
Sci Rep
October 2024
iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal.
Hepatocytes-like cells (HLC) derived from human induced pluripotent stem cells show great promise for cell-based liver therapies and disease modelling. However, their application is currently hindered by the low production yields of existing protocols. We aim to develop a bioprocess able to generate high numbers of HLC.
View Article and Find Full Text PDFBioprocess Biosyst Eng
October 2024
Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências E Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, São Paulo, SP, CEP 03828-000, Brazil.
The present work focused on inline Raman spectroscopy monitoring of SARS-CoV-2 VLP production using two culture media by fitting chemometric models for biochemical parameters (viable cell density, cell viability, glucose, lactate, glutamine, glutamate, ammonium, and viral titer). For that purpose, linear, partial least square (PLS), and nonlinear approaches, artificial neural network (ANN), were used as correlation techniques to build the models for each variable. ANN approach resulted in better fitting for most parameters, except for viable cell density and glucose, whose PLS presented more suitable models.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2025
Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, CEP 03828-000 São Paulo, SP, Brazil. Electronic address:
The Zika disease caused by the Zika virus was declared a Public Health Emergency by the World Health Union (WHO), with microcephaly as the most critical consequence. Aiming to reduce the spread of the virus, biopharmaceutical organizations invest in vaccine research and production, based on multiple platforms. A crescent vaccine production approach is based on virus-like particles (VLP), for not having genetic material in its composition, hypoallergenic and non-mutant character.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2024
Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, CEP 03828-000, São Paulo, SP, Brazil. Electronic address:
In the current biopharmaceutical scenario, constant bioprocess monitoring is crucial for the quality and integrity of final products. Thus, process analytical techniques, such as those based on Raman spectroscopy, have been used as multiparameter tracking methods in pharma bioprocesses, which can be combined with chemometric tools, like Partial Least Squares (PLS) and Artificial Neural Networks (ANN). In some cases, applying spectra pre-processing techniques before modeling can improve the accuracy of chemometric model fittings to observed values.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!