Functional loop dynamics of the streptavidin-biotin complex.

Sci Rep

1] State Key Laboratory of Precision Spectroscopy, Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China [2] NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China 200062.

Published: January 2015

Accelerated molecular dynamics (aMD) simulation is employed to study the functional dynamics of the flexible loop(3-4) in the strong-binding streptavidin-biotin complex system. Conventional molecular (cMD) simulation is also performed for comparison. The present study reveals the following important properties of the loop dynamics: (1) The transition of loop(3-4) from open to closed state is observed in 200 ns aMD simulation. (2) In the absence of biotin binding, the open-state streptavidin is more stable, which is consistent with experimental evidences. The free energy (ΔG) difference is about 5 kcal/mol between two states. But with biotin binding, the closed state is more stable due to electrostatic and hydrophobic interactions between the loop(3-4) and biotin. (3) The closure of loop(3-4) is concerted to the stable binding of biotin to streptavidin. When the loop(3-4) is in its open-state, biotin moves out of the binding pocket, indicating that the interactions between the loop(3-4) and biotin are essential in trapping biotin in the binding pocket. (4) In the tetrameric streptavidin system, the conformational change of the loop(3-4) in each monomer is independent of each other. That is, there is no cooperative binding for biotin bound to the four subunits of the tetramer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298722PMC
http://dx.doi.org/10.1038/srep07906DOI Listing

Publication Analysis

Top Keywords

biotin binding
12
loop dynamics
8
streptavidin-biotin complex
8
amd simulation
8
closed state
8
biotin
8
interactions loop3-4
8
loop3-4 biotin
8
binding biotin
8
binding pocket
8

Similar Publications

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

Cell surface proteins (surfaceome) represent key signalling and interaction molecules for therapeutic targeting, biomarker profiling and cellular phenotyping in physiological and pathological states. Here, we employed coronary artery perfusion with membrane-impermeant biotin to label and capture the surface-accessible proteome in the neo-native (intact) heart. Using quantitative proteomics, we identified 701 heart cell surfaceome accessible by the coronary artery, including receptors, cell surface enzymes, adhesion and junctional molecules.

View Article and Find Full Text PDF

Background/objectives: The enzyme ubiquitin-specific protease 44 (USP44) is a deubiquitinating enzyme with identified physiological roles as a tumor suppressor and an oncogene. While some binding partners and substrates are known for USP44, the identification of other interactions may improve our understanding of its role in cancer. We therefore performed a proximity biotinylation study that identified products of several known cancer genes that are associated with USP44, including a novel interaction between BRCA2 and USP44.

View Article and Find Full Text PDF

Artificial Metalloenzymes with Two Catalytic Cofactors for Tandem Abiotic Transformations.

Angew Chem Int Ed Engl

January 2025

EPFL: Ecole Polytechnique Federale de Lausanne, Institute of Chemical Sciences and Engineering, EPFL-ISIC-LSCI, BCH 3305, 1015, Lausanne, SWITZERLAND.

Artificial metalloenzymes (ArMs) enable the integration of abiotic cofactors within a native protein scaffold, allowing for non-natural catalytic activities. Previous ArMs, however, have primarily relied on single cofactor systems, limiting them to only one catalytic function. Here we present an approach to construct ArMs embedding two catalytic cofactors based on the biotin-streptavidin technology.

View Article and Find Full Text PDF

The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!