NOD mice are functionally deficient in the capacity of cross-presentation.

Immunol Cell Biol

1] Molecular Immunology Division of The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia [2] Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University School of Medicine, Beijing, China.

Published: July 2015

Cross-presentation by CD8(+) conventional dendritic cells (cDCs) is involved in the maintenance of peripheral tolerance and this process is termed cross-tolerance. Previous reports showed that non-obese diabetic (NOD) mice have reduced number of splenic CD8(+) cDCs compared with non-diabetic strains, and that the administration of Flt3L to enhance DC development resulted in reduced diabetes incidence. As CD8(+) cDCs are the most efficient antigen cross-presenting cells, it was assumed that reduced cross-presentation by non-activated, tolerogenic CD8(+) cDC predisposes to autoimmune diabetogenesis. Here we show for the first time that indeed NOD mice have a defect in autoantigen cross-presentation capacity. First, we showed that NOD CD8(+) cDCs were less sensitive to iatrogenic cytochrome c, which had previously been shown to selectively deplete CD8(+) cDCs that functionally cross-present. Second, we found that proliferation of islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific CD8(+) T cells was impaired in NOD compared with non-obese diabetes resistant mice after immunization with cell associated recombinant fusion protein containing the cognate IGRP peptide. This study, therefore, suggests that the reduced number of CD8(+) cDCs in NOD mice, coupled with the reduced capacity to cross-present self-antigens, reduces the overall capacity to maintain peripheral tolerance in the spontaneous autoimmune type 1 diabetes mice.

Download full-text PDF

Source
http://dx.doi.org/10.1038/icb.2014.119DOI Listing

Publication Analysis

Top Keywords

cd8+ cdcs
20
nod mice
16
cd8+
8
peripheral tolerance
8
reduced number
8
nod
6
cdcs
6
mice
5
reduced
5
mice functionally
4

Similar Publications

Natural killer (NK) cells can control metastasis through cytotoxicity and IFN-γ production independently of T cells in experimental metastasis mouse models. The inverse correlation between NK activity and metastasis incidence supports a critical role for NK cells in human metastatic surveillance. However, autologous NK cell therapy has shown limited benefit in treating patients with metastatic solid tumors.

View Article and Find Full Text PDF

Microwave Ablation Combined with Flt3L Provokes Tumor-Specific Memory CD8 T Cells-Mediated Antitumor Immunity in Response to PD-1 Blockade.

Adv Sci (Weinh)

December 2024

Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Provincial Lab for Clinical Immunology Translational Medicine in Universities, Shandong Lung Cancer Institute, 16766 Jingshi Road, Jinan, 250014, P. R. China.

For medically inoperable non-small cell lung cancer, microwave ablation (MWA) represents a super minimally invasive alternative treatment. However, tumor recurrence remains a concern. Here, it is demonstrated that the combination of MWA with Flt3L significantly inhibits tumor recurrence by CD8 central memory T (T)-like cell-dependent antitumor immune responses within the tumor-draining lymph nodes (TdLN).

View Article and Find Full Text PDF

IL-2/anti-IL-2 antibody complexes augment immune responses to therapeutic cancer vaccines.

Proc Natl Acad Sci U S A

November 2024

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.

One driver of the high failure rates of clinical trials for therapeutic cancer vaccines is likely the inability to sufficiently engage conventional dendritic cells (cDCs), the antigen-presenting cell (APC) subset that is specialized in priming antitumor T cells. Here, we demonstrate that, relative to vaccination with an injectable mesoporous silica rod (MPS) vaccine alone (Vax), combining MPS vaccines with CD122-biased IL-2/anti-IL-2 antibody complexes (IL-2cx) drives ~3-fold expansion of cDCs at the vaccination sites, vaccine-draining lymph nodes, and spleens of treated mice. Furthermore, relative to Vax alone, Vax+IL-2cx led to a ~3-fold increase in the numbers of CD8 T cells and ~15-fold increase in the numbers of NK cells at the vaccination site.

View Article and Find Full Text PDF

Conventional dendritic cells (cDCs) generate protective cytotoxic T lymphocyte (CTL) responses against extracellular pathogens and tumors. This is achieved through a process known as cross-presentation (XP), and, despite its biological importance, the mechanism(s) driving XP remains unclear. Here, we show that a cDC-specific pore-forming protein called apolipoprotein L 7C (APOL7C) is up-regulated in response to innate immune stimuli and is recruited to phagosomes.

View Article and Find Full Text PDF

Immunometabolic changes and potential biomarkers in CFS peripheral immune cells revealed by single-cell RNA sequencing.

J Transl Med

October 2024

Department of Endocrinology and Metabolism, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, China.

Article Synopsis
  • The study investigates the immune and metabolic profiles of Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) using single-cell RNA sequencing of blood cells from patients and healthy controls, revealing significant cellular composition changes.
  • It shows an increase in T cells but a notable decrease in other immune cells like NKs and monocytes, suggesting complex alterations in immune function among ME/CFS patients.
  • The research identifies potential biomarkers and pathways, such as ESRRA-APP-CD74, linking immune dysfunction to neurological symptoms, hinting at the disease's autoimmune and immunodeficiency aspects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!