During the last decades antimicrobial resistance has become a global health problem. Metallo-β-lactamases (MBLs) which are broad-spectrum β-lactamases that inactivate virtually all β-lactams including carbapenems, are contributing to this health problem. In this study a novel MBL variant, termed VIM-26, identified in a Klebsiella pneumoniae isolate was studied. VIM-26 belongs to the Verona integron-encoded metallo-β-lactamase (VIM) family of MBLs and is a His224Leu variant of the well-characterized VIM-1 variant. In this study, we report the kinetic parameters, minimum inhibitory concentrations and crystal structures of a recombinant VIM-26 protein, and compare them to previously published data on VIM-1, VIM-2 and VIM-7. The kinetic parameters and minimum inhibitory concentration determinations show that VIM-26, like VIM-7, has higher penicillinase activity but lower cephalosporinase activity than VIM-1 and VIM-2. The four determined VIM-26 crystal structures revealed mono- and di-zinc forms, where the Zn1 ion has distorted tetrahedral coordination geometry with an additional water molecule (W2) at a distance of 2.6-3.7 Å, which could be important during catalysis. The R2 drug binding site in VIM-26 is more open compared to VIM-2 and VIM-7 and neutrally charged due to Leu224 and Ser228. Thus, the VIM-26 drug binding properties are different from the VIM-2 (Tyr224/Arg228) and VIM-7 (His224/Arg228) structures, indicating a role of these residues in the substrate specificity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.13200DOI Listing

Publication Analysis

Top Keywords

vim-26
8
substrate specificity
8
health problem
8
kinetic parameters
8
parameters minimum
8
minimum inhibitory
8
crystal structures
8
vim-1 vim-2
8
vim-2 vim-7
8
drug binding
8

Similar Publications

Background: Deep brain stimulation (DBS) targeting the ventral intermediate nucleus (Vim) of the thalamus or the posterior subthalamic area (PSA) are effective treatments for essential tremor (ET). However, their relative efficacy is unknown.

Objective: Here, we present the first systematic review and network meta-analysis, examining the efficacy of Vim versus PSA DBS for treating medically refractory ET.

View Article and Find Full Text PDF

Background: Tigecycline is a therapeutic option for carbapenemase-producing (CP-Kp). Our aim was to evaluate the impact of the tigecycline's minimum inhibitory concentration (MIC) in the outcome of patients with CP-Kp bacteraemia treated with tigecycline monotherapy.

Methods: Patients with monomicrobial bacteraemia due to CP-Kp that received appropriate targeted monotherapy or no appropriate treatment were included.

View Article and Find Full Text PDF

VIM-39, a VIM-1-like metallo-β-lactamase variant (VIM-1 Thr33Ala His224Leu) was identified in a clinical isolate of Klebsiella pneumoniae belonging to sequence type 147. VIM-39 hydrolyzed ampicillin, cephalothin, and imipenem more efficiently than did VIM-1 and VIM-26 (a VIM-1 variant with the His224Leu substitution) because of higher turnover rates.

View Article and Find Full Text PDF

During the last decades antimicrobial resistance has become a global health problem. Metallo-β-lactamases (MBLs) which are broad-spectrum β-lactamases that inactivate virtually all β-lactams including carbapenems, are contributing to this health problem. In this study a novel MBL variant, termed VIM-26, identified in a Klebsiella pneumoniae isolate was studied.

View Article and Find Full Text PDF

We evaluated doripenem-resistant Acinetobacter baumannii-Acinetobacter calcoaceticus complex (ACB; n = 411) and Enterobacteriaceae (n = 92) isolates collected from patients from 14 European and Mediterranean countries during 2009 to 2011 for the presence of carbapenemase-encoding genes and clonality. Following susceptibility testing, carbapenem-resistant (doripenem MIC, >2 μg/ml) isolates were screened for carbapenemases. New β-lactamase genes were expressed in a common background and susceptibility was tested.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!