A microwave-assisted synthesis of cisplatin, cis-[Pt(NH3)2Cl2], has been developed and optimized on both a 0.2 and 0.05 millimolar scale. The optimized synthetic procedure was modeled after the Lebedinskii-Golovnya method and is suitable for incorporating the radionuclide, (195m)Pt, into cisplatin for biological studies. Highest yields (47%) and purity are obtained using a K2PtCl4 : NH4OAc : KCl molar ratio of 1 : 4 : 2 at a temperature of 100 °C. The entire synthesis and purification procedure requires approximately 80 min. At a reaction temperature of 150 °C, the trans isomer is the exclusive product, suggesting that complexes of the general form, trans-[Pt(RNH2)2Cl2], can be synthesized directly from K2PtCl4 using [RNH3]OAc (R = alkyl or aryl moieties) via a microwave process. Two novel separation procedures have been developed which efficiently remove the major impurity (1 : 1 Magnus-type salt) from the crude reaction product, yielding a product of purity comparable to that obtained by the Dhara method and suitable for biological studies. These procedures are applicable to both the micro- and macro-scale of synthesis. The question of whether this microwave-assisted synthesis of cisplatin will be a preferred method for incorporating (195m)Pt into cisplatin is yet to be determined.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4dt03617dDOI Listing

Publication Analysis

Top Keywords

microwave-assisted synthesis
12
cisplatin cis-[ptnh32cl2]
8
synthesis cisplatin
8
method suitable
8
195mpt cisplatin
8
biological studies
8
cisplatin
5
synthesis anticancer
4
anticancer drug
4
drug cisplatin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!