Ryanodine and inositol triphosphate receptors modulate facilitation and tetanic depression at the frog neuromuscular junction.

Muscle Nerve

Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.

Published: October 2015

Introduction: Short-term plasticity of synaptic function is an important physiological control of transmitter release. Short-term plasticity can be regulated by intracellular calcium released by ryanodine and inositol triphosphate (IP3) receptors, but the role of these receptors at the neuromuscular junction is understood incompletely.

Methods: We measured short-term plasticity of evoked endplate potential (EPP) amplitudes from frog neuromuscular junctions treated with ryanodine, 2-aminoethoxydiphenylborane (2-APB), or 1-[6-[[(17β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U- 73122).

Results: Ryanodine decreases paired-pulse facilitation for intervals <20 ms and markedly decreases tetanic depression. Treatment with 2-APB reduces EPP amplitude, increases paired-pulse facilitation for intervals of <20 ms, and significantly reduces tetanic depression. U-73122 decreases EPP amplitude and decreases paired-pulse depression for intervals <20 ms.

Conclusions: Ryanodine, IP3 receptors, and phospholipase C modulate short-term plasticity of transmitter release at the neuromuscular junction. These results suggest possible targets for improving the safety factor of neuromuscular transmission during repetitive activity of the neuromuscular junction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mus.24571DOI Listing

Publication Analysis

Top Keywords

short-term plasticity
12
ryanodine inositol
8
inositol triphosphate
8
frog neuromuscular
8
neuromuscular junction
8
ryanodine
4
triphosphate receptors
4
receptors modulate
4
modulate facilitation
4
facilitation tetanic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!