Aims: Ciliated hepatic foregut cysts (CHFCs) are retained benign lesions of the liver. However, a case of squamous cell metaplasia and five cases of squamous cell carcinoma arising from a CHFC have been described. The potential of malignant transformation makes the identification of new biomarkers necessary. As the cancer/testis antigen sperm protein 17 (Sp17) has been detected in oral and oesophageal squamous cell carcinomas, the aim of this study was to investigate the expression of Sp17 and AKAP-associated sperm protein (ASP), which has a shared N-terminal sequence with Sp17, in four surgically resected CHFCs.
Methods And Results: CHFC specimens were taken from two patients who attended the Medical College of Wisconsin, Milwaukee, USA and two patients who attended the Fundación Jiménez Díaz, Madrid, Spain. CHFCs were found to be immunopositive for Sp17 and ASP. Both proteins were localized to the cytoplasm of ciliated cells lining the cysts, and their cilia. Confocal microscopy demonstrated that Sp17 and ASP overlapped in the same region of the cell.
Conclusion: Sp17 and ASP cancer/testis antigens were found in ciliated cells of four CHFCs. Further characterization of Sp17 and ASP in patients with CHFCs may provide significant clues for understanding the molecular mechanisms underlying their predisposition to develop squamous cell carcinomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/his.12654 | DOI Listing |
Evolution
January 2025
Department of Biological Sciences, Duquesne University, Pittsburgh, PA, 15282, United States.
Male reproductive proteins frequently evolve rapidly in animals, potentially due to adaptive evolution driven by sperm competition, polyspermy avoidance, or pathogen defense. Alternatively, elevated rates of protein change may be due to relaxed constraint. The prostate-specific protease KLK3 has experienced dynamic evolution since its origin stemming from a gene duplication in the ancestor of all Old World primates, with instances of rapid evolution, stasis, and pseudogenization.
View Article and Find Full Text PDFSci Rep
January 2025
Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
Poor male fertility significantly affects dairy production, primarily due to low conception rates (CR) in bulls, even when cows are inseminated with morphologically normal sperm. Seminal plasma is a key factor in evaluating the fertilizing ability of bull semen. The extracellular vesicles (EVs) in seminal plasma contain fertility-associated proteins like SPAM1, ADAM7, and SP10, which influence sperm function and fertilizing potential.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.
View Article and Find Full Text PDFInt J Dev Biol
January 2025
Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland.
Male infertility is a multifactorial condition for which the underlying causes frequently remain undefined. Genetic factors have long been associated with male fertility. However, many of them are poorly or not at all characterized and their biological functions are unknown.
View Article and Find Full Text PDFAnim Reprod
January 2025
Hebei Key Laboratory of Animal Diversity, College of Life Sciences, Langfang Normal University, Hebei Langfang, China.
More than 90% of spermatozoa of boars in pork producing countries is stored in liquid at 17 °C; however, the quality of these spermatozoa is affected by bacterial breeding and oxidative damage. This study analyzed sperm quality and sperm capacitation after storage to study the effects of the effects of ZnO nanoparticles (ZnO NPs) supplementation on seminal plasma (SP)-free sperm preservation. We investigated the effects of adding 20, 50, 100 and 200 μg/mL of ZnO NPs to a seminal free boar sperm diluent over a 7-day period at 17 °C to assess the changes in non-capacitated/capacitated sperm quality parameters, antioxidant capacity, ATP content and extent of protein tyrosine phosphorylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!