Directed evolution is a common tool employed to generate enzymes suitable for industrial use. High thermal stability is often advantageous or even a requirement for biocatalysts, as such the evolution of protein stability is of practical as well as academic interest. Even when evolving enzymes for new or improved catalytic functions, stability is an important factor since it can limit the accumulation rate and number of desired active site mutations. Dienelactone hydrolase, a small monomeric protein, has been previously evolved via a three-stage process to possess enhanced activity and specificity toward non-physiological substrates. In addition to seven active site mutations there were three surface mutations that were thought to increase the stability of the enzyme and compensate for the destabilizing active site mutations. Here, the individual influence of the three surface mutations--Q110L, Y137C and N154D--on the thermal and chemical stability of DLH has been assessed. While the Q110L and N154D mutations improved the thermal stability, the influence of the Y137C mutation was more complex. Individually it was destabilizing both thermally and chemically, but when in the presence of the Q110L and N154D mutations its effect was neutralized in relation to thermal but not chemical stability. In the context of a directed evolution experiment, these compensatory surface mutations play important roles. However, our results show that detrimental mutations can arise, thus the simultaneous monitoring of stability changes while evolving enzymes for enhanced catalytic properties can be beneficial.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10930-015-9600-7 | DOI Listing |
mBio
January 2025
Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.
The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
College of Life Sciences, Beijing Normal University, Beijing 100875, China.
Mammalian J-domain protein DNAJC9 interacts with histones H3-H4 and is important for cell proliferation. However, its exact function remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, loss of Djc9, the ortholog of DNAJC9, renders the histone chaperone Asf1 no longer essential for growth.
View Article and Find Full Text PDFBiopolymers
March 2025
Department of Chemistry, Bose Institute, Kolkata, India.
The stability of α-crystallin, the major protein of the mammalian eye lens and a molecular chaperone, is one of the most crucial factors for its survival and function. The chaperone-like activity and stability of α-crystallin dramatically increased in the presence of Zn. Each subunit of α-crystallin could bind multiple zinc atoms through inter-subunit bridging and cause enhanced stability.
View Article and Find Full Text PDFJ Pestic Sci
November 2024
Bacillus Tech LLC.
The Cry1Fa insecticidal protein from (Bt) was expressed on the surface of (Bs) spores to create transgenic Bs spores referred to as Spore-Cry1Fa. Cry1Fa, along with its leader sequence, was connected to the carboxyl end of a Bs spore outercoat protein, CotC, through a flexible linker. The Arg-27 residue of the Cry1Fa protein was mutated to Leu to prevent detachment from the spores due to protease digestion.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, P.R. China.
Hispidin (1) is a polyphenolic compound with a wide range of pharmacological activities that is distributed in both plants and fungi. In addition to natural extraction, hispidin can be obtained by chemical or enzymatic synthesis. In this study, the identification and characterization of an undescribed enzyme, PheG, from Phellinus igniarius (P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!