A protein with high purity has become an essential pre-requisite for investigating its bioactivity, molecular structure and characteristics. Therefore, the development of technologies for efficient purification of protein is urgently necessary. The objective of this study was to establish a purification protocol for a recombinant protein rG17PE38. Different forms of chromatography such as hydrophobic interaction and ion exchange chromatography were chosen as the core purification steps. The performance of each technique was optimized to meet the requirements and the purification steps were arranged in a logical way of facilitating to operate in next step. In addition, some characteristics of the protein such as stability, bioactivity and cellular location were determined. Finally, whether the protein could induce cell apoptosis was also explored. The results showed the protein purified via the suggested three-step purification scheme could obtain a purity of 95%, and its bioactivity in the form of IC₅₀ was 17.6 ng/mL, furthermore it could keep stable at 4 °C for at least 10 days. The protein could bind on its target cell membrane specifically, and inducing cell apoptosis was demonstrated to be one of the cytotoxicity mechanisms of the protein. Results obtained in our study may provide useful information on strategies of protein purification and lay a substantial foundation for the followed animal or clinical experiments on rG17PE38.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2015.01.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!