Difficulties in correctly differentiating Culex restuans mosquitoes from Culex pipiens have left the spatiotemporal mechanisms underlying the epidemiology of West Nile virus (WNV) in the northeastern United States largely unresolved. We performed weekly surveys across a natural to urban gradient of sites in central New Jersey (USA) and used a rapid and cheap DNA extraction and a species-specific PCR assay to create single species pools for WNV testing. To assess seasonal trends we combined these results with WNV surveillance records generated from grouped Cx. restuans/Cx. pipiens pools tested in 2011-2012. Cx.restuans was found to be highly abundant within all sites and reached especially high abundance in urban wetland habitats greatly disturbed by human action. In contrast, the seasonal presence of Cx. pipiens was greatest in residential and urban habitats and its presence in natural areas was minimal throughout the season. WNV infection rates in both species were similar but Cx. restuans was consistently found infected first and more frequently, even as early as May, whereas WNV was first detected in Cx. pipiens in late July. WNV activity peaked during the month of August when WNV was commonly isolated from both species. The peak in WNV activity in August observed for both species was consistent with data from 2011 to 2012 when Cx. restuans and Cx. pipiens were grouped, although analyzing single species pools increased overall predicted infection levels. Our results support the preeminence of Cx. restuans as an enzootic vector of WNV and strongly suggest this species has become a "native invasive" exploiting human modified habitats and reaching very high abundance there. Importantly, high infection rates in disturbed wetland sites with high populations of Cx. restuans suggest this species may enable the introduction of WNV to urbanized environments where both Culex contribute to transmission potentiating disease risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.meegid.2015.01.007 | DOI Listing |
PLoS Pathog
January 2025
Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Institute of Virology, Philipps University Marburg, Marburg, Germany. Electronic address:
Orthoflaviviruses are emerging arthropod-borne pathogens whose replication cycle is tightly linked to host lipid metabolism. Previous lipidomic studies demonstrated that infection with the closely related hepatitis C virus (HCV) changes the fatty acid (FA) profile of several lipid classes. Lipids in HCV-infected cells had more very long-chain and desaturated FAs and viral replication relied on functional FA elongation and desaturation.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology and Immunology, Miller School of Medicine, University of Miami/UHealth, Miami, FL 33136, USA.
Flaviviruses are a diverse group of viruses primarily transmitted through hematophagous insects like mosquitoes and ticks. Significant expansion in the geographic range, prevalence, and vectors of flavivirus over the last 50 years has led to a dramatic increase in infections that can manifest as hemorrhagic fever or encephalitis, leading to prolonged morbidity and mortality. Millions of infections every year pose a serious threat to worldwide public health, encouraging scientists to develop a better understanding of the pathophysiology and immune evasion mechanisms of these viruses for vaccine development and antiviral therapy.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 5508-900, Brazil.
Dengue fever, caused by the dengue virus (DENV), poses a significant global health challenge, particularly in tropical and subtropical regions. Recent increases in indigenous DENV cases in Europe are concerning, reflecting rising incidence linked to climate change and the spread of mosquitoes. These vectors thrive under environmental conditions like temperature and humidity, which are increasingly influenced by climate change.
View Article and Find Full Text PDFViruses
December 2024
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA.
Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral-host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!