Synthesis and biological evaluation of adamantane-based aminophenols as a novel class of antiplasmodial agents.

Bioorg Med Chem Lett

Department of Medicinal Chemistry, AstraZeneca India Pvt. Ltd, Bellary Road, Hebbal, Bangalore 560024, India. Electronic address:

Published: February 2015

A series of adamantane based aminophenol derivatives were synthesized and evaluated for their antiplasmodial activity in vitro against Plasmodium falciparum (Pf_NF54) and resistant strain (Pf_K1). Herein, we report compounds resulting from this work that show excellent potency against both strains. Additionally, this series displayed excellent cytotoxicity selectivity index against THP1 cell line and had acceptable in vitro DMPK properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2014.12.037DOI Listing

Publication Analysis

Top Keywords

synthesis biological
4
biological evaluation
4
evaluation adamantane-based
4
adamantane-based aminophenols
4
aminophenols novel
4
novel class
4
class antiplasmodial
4
antiplasmodial agents
4
agents series
4
series adamantane
4

Similar Publications

Aquaculture is one of the world's fastest-growing sectors in food production but with multiple challenges related to animal handling and infections. The disease caused by infectious salmon anemia virus (ISAV) leads to outbreaks of local epidemics, reducing animal welfare, and causing significant economic losses. The composition of feed has shifted from marine ingredients such as fish oil and fish meal towards a more plant-based diet causing reduced levels of eicosapentaenoic acid (EPA).

View Article and Find Full Text PDF

Background And Aim: Zinc oxide and copper oxide nanoparticles are known for their promising biological activities. This study aims to synthesize zinc oxide nanoparticles and copper-doped zinc oxide nanoparticles to harness the combined cytotoxic and anticancer effects of them in vitro and in vivo studies.

Methods: Zinc oxide nanoparticles, both doped and undoped, were synthesized using a chemical co-precipitation method.

View Article and Find Full Text PDF

Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA).

View Article and Find Full Text PDF

Background: Drought stress is a significant global challenge that negatively impacts cotton fiber yield and quality. Although many drought-stress responsive genes have been identified in cotton species (Gossypium spp.), the diversity of drought response mechanisms across cotton species remains largely unexplored.

View Article and Find Full Text PDF

Chemically Hydrophobic and Structurally Antireflective Nanocoatings in Butterflies.

ACS Appl Bio Mater

January 2025

Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, Geneva CH-1211, Switzerland.

Moth-eye nanostructures, known for their biological antireflective properties, are formed by a self-assembly mechanism. Understanding and replicating this mechanism on artificial surfaces open avenues for the engineering of bioinspired multifunctional nanomaterials. Analysis of corneal nanocoatings from butterflies of the genus reveals a variety of nanostructures with uniformly strong antiwetting properties accompanied by varying antireflective functionalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!