The role of the kynurenine pathway of tryptophan metabolism in cardiovascular disease. An emerging field.

Hamostaseologie

Dr. Daniel F. J. Ketelhuth, Cardiovascular Research Unit, Center for Molecular Medicine, L8:03, Karolinska University Hospital, S-17176 Stockholm, Sweden, Fax +46/8/31 31 47, E-mail:

Published: February 2016

Coronary heart disease and stroke, the deadliest forms of cardiovascular disease (CVD), are mainly caused by atherosclerosis, a chronic inflammatory disease of the artery wall driven by maladaptive immune responses in the vessel wall. Various risk factors for CVD influence this pathogenic process, including diabetes mellitus, hypertension, dyslipidaemia, and obesity. Indoleamine 2,3-dioxygenase (IDO), an enzyme catalyzing the rate-limiting step in the kynurenine pathway of tryptophan degradation, is strongly induced by inflammation in several tissues, including the artery wall. An increasing body of evidence indicates that IDO promotes immune tolerance, decreases inflammation, and functions as a homeostatic mechanism against excessive immune reactions. This review provides an overview of the emerging field of the kynurenine pathway of tryptophan degradation in CVD, emphasizing the role of IDO-mediated tryptophan metabolism and its metabolites in the modulation of 'classical' cardiovascular risk factors, such as hypertension, obesity, lipid metabolism, diabetes mellitus, and in the development of atherosclerotic CVD.

Download full-text PDF

Source
http://dx.doi.org/10.5482/HAMO-14-10-0052DOI Listing

Publication Analysis

Top Keywords

kynurenine pathway
12
pathway tryptophan
12
tryptophan metabolism
8
cardiovascular disease
8
emerging field
8
artery wall
8
risk factors
8
diabetes mellitus
8
tryptophan degradation
8
role kynurenine
4

Similar Publications

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

Tryptophan Kynurenine Pathway-Based Imaging Agents for Brain Disorders and Oncology-From Bench to Bedside.

Biomolecules

January 2025

Department of Radiology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA.

Tryptophan (Trp)-based radiotracers have excellent potential for imaging many different types of brain pathology because of their involvement with both the serotonergic and kynurenine (KYN) pathways. However, radiotracers specific to the kynurenine metabolism pathway are limited. In addition, historically Trp-based radiopharmaceuticals were synthesized with the short-lived isotope carbon-11.

View Article and Find Full Text PDF

Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates cell immune responses in a cell type-specific and ligand-dependent manner. In the central nervous system, astrocytic AhR plays important roles in regulating neuroinflammation by mediating responses to endogenous ligands generated from the inflammation-induced indoleamine 2,3-dioxygenase 1 (IDO1)/kynurenine (KYN) pathway. We previously demonstrated that reduction of AhR expression decreases lipopolysaccharide (LPS)-induced pro-inflammatory responses in microglia.

View Article and Find Full Text PDF

Introduction: Indoleamine-2,3-dioxygenase (IDO) converts L-tryptophan (T) to L-kynurenine (K) resulting in an immunosuppressive microenvironment. Aim of the current study is to evaluate in patients with neuroendocrine tumor (NET): 1) T and K concentrations; 2) correlation with clinical outcome; 3) relationship between IDO activity and inflammatory cytokines.

Methods: A cross-sectional study was performed to investigate the IDO pathway in patients in follow-up for NET.

View Article and Find Full Text PDF

Thrombin-induced kynurenine 3-monooxygenase causes variations in the kynurenine pathway, leading to neurological deficits in a murine intracerebral hemorrhage model.

J Pharmacol Sci

February 2025

Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.

The purpose of the present study is to investigate changes in the kynurenine pathway after intracerebral hemorrhage (ICH) and its effects on ICH-induced injury. The exposure of a primary rat microglial culture to thrombin increased the mRNA level of kynurenine 3-monooxygenase (KMO), and this increase was attenuated by a p38 MAPK inhibitor. Thrombin also increased the protein level of KMO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!