The perception of pain is highly variable. It depends on bottom-up-mediated factors like stimulus intensity and top-down-mediated factors like expectations. In the brain, pain is associated with a complex pattern of neuronal responses including evoked potentials and induced responses at alpha and gamma frequencies. Although they all covary with stimulus intensity and pain perception, responses at gamma frequencies can be particularly closely related to the perception of pain. It is, however, unclear whether this association holds true across all types of pain modulation. Here, we used electroencephalography to directly compare bottom-up- and top-down-mediated modulations of pain, which were implemented by changes in stimulus intensity and placebo analgesia, respectively. The results show that stimulus intensity modulated pain-evoked potentials and pain-induced alpha and gamma responses. In contrast, placebo analgesia was associated with changes of evoked potentials, but not of alpha and gamma responses. These findings reveal that pain-related neuronal responses are differentially sensitive to bottom-up and top-down modulations of pain, indicating that they provide complementary information about pain perception. The results further show that pain-induced gamma oscillations do not invariably encode pain perception but may rather represent a marker of sensory processing whose influence on pain perception varies with behavioral context.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.j.pain.0000460309.94442.44 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!