Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327104 | PMC |
http://dx.doi.org/10.3390/s150101804 | DOI Listing |
Nutrients
January 2025
Department of Computer Engineering, Inje University, Gimhae 50834, Republic of Korea.
Background: Food image recognition, a crucial step in computational gastronomy, has diverse applications across nutritional platforms. Convolutional neural networks (CNNs) are widely used for this task due to their ability to capture hierarchical features. However, they struggle with long-range dependencies and global feature extraction, which are vital in distinguishing visually similar foods or images where the context of the whole dish is crucial, thus necessitating transformer architecture.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.
With the rapid development of AI algorithms and computational power, object recognition based on deep learning frameworks has become a major research direction in computer vision. UAVs equipped with object detection systems are increasingly used in fields like smart transportation, disaster warning, and emergency rescue. However, due to factors such as the environment, lighting, altitude, and angle, UAV images face challenges like small object sizes, high object density, and significant background interference, making object detection tasks difficult.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen, Germany.
This work leverages ultrasonic guided waves (UGWs) to detect and localize damage in structures using lightweight Artificial Intelligence (AI) models. It investigates the use of machine learning (ML) to train the effects of the damage on UGWs to the model. To reduce the number of trainable parameters, a physical signal processing approach is applied to the raw data before passing the data to the model.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Xi'an Institute of Space Radio Technology, Xi'an 710100, China.
The deformation monitoring of integrated truss structures (ITSs) is essential for ensuring the reliable performance of mounted equipment in complex space environments. Reconstruction methods based on local strain information have been proven effective, yet the identification faces significant challenges due to variable thermal-mechanical loads, interactions among structural components, and special boundary conditions. This paper proposes a deformation reconstruction strategy tailored for ITSs under combined thermal-mechanical load scenarios wherein deformations of both the primary truss structures and the attached panel systems are investigated.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Frequency diversity array-multiple-input multiple-output (FDA-MIMO) radar realizes an angle- and range-dependent system model by adopting a slight frequency offset between adjacent transmitter sensors, thereby enabling potential target localization. This paper presents FDA-MIMO radar-based rapid target localization via the reduction dimension root reconstructed multiple signal classification (RDRR-MUSIC) algorithm. Firstly, we reconstruct the two-dimensional (2D)-MUSIC spatial spectrum function using the reconstructed steering vector, which involves no coupling of direction of arrival (DOA) and range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!