The density functional theory (DFT) with commonly used functionals is known to be incorrect for charge-transfer problems. With long-range-corrected (LC) density functionals, the asymptotic exchange potential is gradually switched to the Hartree-Fock exchange at a long range, and the prediction for charge-transfer states is greatly improved. In this work, we test LC-DFT's performance on charge-transfer couplings. The range-separation parameter can be tuned nonempirically for properties of a generalized DFT. We propose to minimize the difference of highest-occupied Kohn-Sham orbital energy and the ionization potential (for hole transfer) or the lowest-unoccupied orbital energy and the electron affinity (for electron transfer). For photoinduced charge transfer, the minimum in the sum of such differences for the donor and the acceptor is proposed. With the range-separation parameters optimized, we found that ET couplings derived from the LC-DFT are close to those derived from coupled cluster with singles and doubles. When compared with experimentally derived Mulliken-Hush couplings, LC-DFT couplings are greatly improved as well. We also found that the couplings from BNL and LC-BLYP functionals are generally better than those from LC-ωPBE and LC-ωPBE0. LC-DFT is suitable for calculating ET coupling, especially with this nonempirical approach for the range-separation parameter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp511216c | DOI Listing |
Clin Rheumatol
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFSleep Breath
January 2025
Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Da Hua Road, Dong Dan, Dongcheng District, Beijing, 100730, PR China.
Purpose: To investigate the relationship between obstructive sleep apnea hypopnea syndrome (OSAHS) severity and fat, bone, and muscle indices.
Methods: This study included 102 patients with OSAHS and retrospectively reviewed their physical examination data. All patients underwent polysomnography, body composition analysis, dual-energy X-ray absorptiometry, computed tomography (CT) and blood test.
J Mol Model
January 2025
Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.
Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!