Rationale: Proper patterning of the atrioventricular canal (AVC) is essential for delay of electrical impulses between atria and ventricles, and defects in AVC maturation can result in congenital heart disease.
Objective: To determine the role of canonical Wnt signaling in the myocardium during AVC development.
Methods And Results: We used a novel allele of β-catenin that preserves β-catenin's cell adhesive functions but disrupts canonical Wnt signaling, allowing us to probe the effects of Wnt loss of function independently. We show that the loss of canonical Wnt signaling in the myocardium results in tricuspid atresia with hypoplastic right ventricle associated with the loss of AVC myocardium. In contrast, ectopic activation of Wnt signaling was sufficient to induce formation of ectopic AV junction-like tissue as assessed by morphology, gene expression, and electrophysiological criteria. Aberrant AVC development can lead to ventricular pre-excitation, a characteristic feature of Wolff-Parkinson-White syndrome. We demonstrate that postnatal activation of Notch signaling downregulates canonical Wnt targets within the AV junction. Stabilization of β-catenin protein levels can rescue Notch-mediated ventricular pre-excitation and dysregulated ion channel gene expression.
Conclusions: Our data demonstrate that myocardial canonical Wnt signaling is an important regulator of AVC maturation and electric programming upstream of Tbx3. Our data further suggest that ventricular pre-excitation may require both morphological patterning defects, as well as myocardial lineage reprogramming, to allow robust conduction across accessory pathway tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312529 | PMC |
http://dx.doi.org/10.1161/CIRCRESAHA.116.304731 | DOI Listing |
J Biol Chem
December 2024
Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo 255300, China.
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are pluripotent stem cells derived from pre-implantation and post-implantation embryos, respectively. These cells are capable of interconversion through manipulation of key transcription factors and signaling pathways. While BAF chromatin remodeling complexes are known to play crucial roles in ESC self-renewal and pluripotency, their roles in EpiSCs and their interconversion with ESCs remain unclear.
View Article and Find Full Text PDFJCEM Case Rep
January 2025
Department of Internal Medicine, Erasmus Medical Center, University Medical Center, 3015 CE, Rotterdam, the Netherlands.
A defect in the canonical Wnt-β-catenin pathway may lead to reduced bone strength and increased fracture risk. Sclerostin is a key inhibitor of this pathway by binding to low-density lipoprotein (LDL) receptor-related protein , thereby reducing bone formation. The effectiveness of romosozumab, a human monoclonal antibody that binds sclerostin and prevents this inhibitory effect, has been questioned in patients with inactivating genetic variants in or .
View Article and Find Full Text PDFFASEB J
December 2024
Faculty of Pharmacy, Alamein International University, Alamein, Egypt.
Individuals with metabolic syndrome have a high risk of developing cardiovascular disorders that is closely tied to visceral adipose tissue dysfunction, as well as an altered interaction between adipose tissue and the cardiovascular system. In metabolic syndrome, adipose tissue dysfunction is associated with increased hypertrophy, reduced vascularization, and hypoxia of adipocytes, leading to a pro-oxidative and pro-inflammatory environment. Among the pathways regulating adipose tissue homeostasis is the wingless-type mammary tumor virus integration site family (Wnt) signaling pathway, with both its canonical and non-canonical arms.
View Article and Find Full Text PDFCell Mol Biol Lett
December 2024
Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
Background: Radiotherapy for pelvic malignant tumors inevitably causes intestinal tissue damage. The regeneration of intestinal epithelium after radiation injury relies mainly on crypt fission. However, little is known about the regulatory mechanisms of crypt fission events.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2024
Experimental Center for Research, School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China. Electronic address:
Cadmium (Cd) is a highly toxic metal in human body, and therefore understanding the immunotoxicity of Cd is significant for public health. The aim of this study was to investigate the role of hematopoietic stem cells (HSC) in regulating the immunotoxicity of Cd. After exposure to 10 ppm Cd via drinking water for up to 9 months, C57BL/6 mice had a suppressed adaptive immune system at day 135 but had an enhanced adaptive immune system at day 270 during Cd exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!