Cysteine is very susceptible to reactive oxygen species. In response; posttranslational thiol modifications such as reversible disulfide bond formation have arisen as protective mechanisms against undesired in vivo cysteine oxidation. In Gram-negative bacteria a major defense mechanism against cysteine overoxidation is the formation of mixed protein disulfides with low molecular weight thiols such as glutathione and glutathionylspermidine. In this review we discuss some of the mechanistic aspects of glutathionylspermidine in prokaryotes and extend its potential use to eukaryotes in proteomics and biochemical applications through an example with tissue transglutaminase and its S-glutathionylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6272389PMC
http://dx.doi.org/10.3390/molecules20011452DOI Listing

Publication Analysis

Top Keywords

glutathionylspermidine modification
4
modification protein
4
protein groups
4
groups enzymology
4
enzymology application
4
application study
4
study protein
4
protein glutathionylation
4
glutathionylation cysteine
4
cysteine susceptible
4

Similar Publications

Aims: Trypanosomatids have a unique trypanothione-based thiol redox metabolism. The parasite-specific dithiol is synthesized from glutathione and spermidine, with glutathionylspermidine as intermediate catalyzed by trypanothione synthetase. In this study, we address the oxidative stress response of African trypanosomes with special focus on putative protein S-thiolation.

View Article and Find Full Text PDF

Cysteine is very susceptible to reactive oxygen species. In response; posttranslational thiol modifications such as reversible disulfide bond formation have arisen as protective mechanisms against undesired in vivo cysteine oxidation. In Gram-negative bacteria a major defense mechanism against cysteine overoxidation is the formation of mixed protein disulfides with low molecular weight thiols such as glutathione and glutathionylspermidine.

View Article and Find Full Text PDF

Certain bacteria synthesize glutathionylspermidine (Gsp), from GSH and spermidine. Escherichia coli Gsp synthetase/amidase (GspSA) catalyzes both the synthesis and hydrolysis of Gsp. Prior to the work reported herein, the physiological role(s) of Gsp or how the two opposing GspSA activities are regulated had not been elucidated.

View Article and Find Full Text PDF

Trypanothione, a metabolite specific to trypanosomatid parasites, is enzymatically synthesized from spermidine and glutathione by the consecutive action of the ATP-dependent carbon-nitrogen ligases, glutathionylspermidine synthetase and trypanothione synthetase. As part of our programme aimed at developing inhibitors of these enzymes, we have synthesized a series of analogues of glutathione (gamma-L-Glu-L-Cys-Gly) and tested them as substrates or inhibitors of glutathionylspermidine synthetase. Recognition at the gamma-glutamyl moiety appears to be essential, as any modification of this part of glutathione results in a total loss of activity as a substrate.

View Article and Find Full Text PDF

Trypanothione reductase, central to the redox defense systems of parasitic trypanosomes and leishmanias, is sufficiently different in its substrate-specificity from mammalian glutathione reductase to represent an attractive target for chemotherapeutic intervention. Previous studies of the physiological substrates trypanothione (N1,N8-bis(glutathionyl)spermidine) and N1-glutathionylspermidine disulphide established that the spermidine moiety of these substrates can be replaced by the 3-dimethyl-propylamide group (N1-glutathionyl-N3-dimethyl-propylamide). With this modification, the specificity for the gamma-glutamyl moiety of the substrate was examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!