Development of a microfluidic "click chip" incorporating an immobilized Cu(I) catalyst.

RSC Adv

Radiological Sciences Division, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Blvd., St. Louis, MO 63110, USA.

Published: January 2015

We have developed a microfluidic "click chip" incorporating an immobilized Cu(I) catalyst for click reactions. The microfluidic device was fabricated from polydimethylsiloxane (PDMS) bonded to glass and featured ~14,400 posts on the surface to improve catalyst immobilization. This design increased the immobilization efficiency and reduces the reagents' diffusion time to active catalyst site. The device also incorporates five reservoirs to increase the reaction volume with minimal hydrodynamic pressure drop across the device. A novel water-soluble tris-(benzyltriazolylmethyl)amine (TBTA) derivative capable of stabilizing Cu(I), ligand , was synthesized and successfully immobilized on the chip surface. The catalyst immobilized chip surface was characterized by X-ray photoelectron spectroscopy (XPS). The immobilization efficiency was evaluated via radiotracer methods: the immobilized Cu(I) was measured as 1136±272 nmol and the surface immobilized Cu(I) density was 81±20 nmol cm. The active Cu(I)-ligand could be regenerated up to five times without losing any catalyst efficiency. The "click" reaction of Flu568-azide and propargylamine was studied on chip for proof-of-principle. The on-chip reaction yields were ca. 82% with a 50 min reaction time or ca. 55% with a 15 min period at 37 °C, which was higher than those obtained in the conventional reaction. The on-chip "click" reaction involving a biomolecule, cyclo(RGDfK) peptide was also studied and demonstrated a conversion yield of ca. 98%. These encouraging results show promise on the application of the Cu(I) catalyst immobilized "click chip" for the development of biomolecule based imaging agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295806PMC
http://dx.doi.org/10.1039/C4RA15507FDOI Listing

Publication Analysis

Top Keywords

immobilized cui
16
"click chip"
12
cui catalyst
12
microfluidic "click
8
chip" incorporating
8
incorporating immobilized
8
immobilization efficiency
8
immobilized chip
8
chip surface
8
catalyst immobilized
8

Similar Publications

In situ arsenic immobilization by natural iron (oxyhydr)oxide precipitates in As-contaminated groundwater irrigation canals.

J Environ Sci (China)

July 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:

Arsenic-contaminated groundwater is widely used in agriculture. To meet the increasing demand for safe water in agriculture, an efficient and cost-effective method for As removal from groundwater is urgently needed. We hypothesized that Fe (oxyhydr)oxide (FeOOH) minerals precipitated in situ from indigenous Fe in groundwater may immobilize As, providing a solution for safely using As-contaminated groundwater in irrigation.

View Article and Find Full Text PDF

Optimizing extrusion-based 3D bioprinting of plant cells with enhanced resolution and cell viability.

Biofabrication

January 2025

Mechanical Engineering, Tsinghua University, A421 Lee Shau Kee Building, Tsinghua Uniersity, Haidian District, Beijing, 100084, CHINA.

3D bioprinting of plant cells has emerged as a promising technology for plant cell immobilization and related applications. Despite the numerous progress in mammal cell printing, the bioprinting of plant cells is still in its infancy and needs further investigation. Here, we present a systematic study on optimizing the 3D bioprinting of plant cells, using carrots as an example, towards enhanced resolution and cell viability.

View Article and Find Full Text PDF

Chronic restraint stress affects the diurnal rhythms of gut microbial composition and metabolism in a mouse model of depression.

BMC Microbiol

January 2025

Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.

Background: Depression is a common mental disorder accompanied by gut microbiota dysbiosis, which disturbs the metabolism of the host. While diurnal oscillation of the intestinal microbiota is involved in regulating host metabolism, the characteristics of the intestinal microbial circadian rhythm in depression remain unknown. Our aim was to investigate the microbial circadian oscillation signature and related metabolic pathways in a mouse model with depression-like behaviours.

View Article and Find Full Text PDF

Building anion-derived solid electrolyte interphase (SEI) with enriched LiF is considered the most promising strategy to address inferior safety features and poor cyclability of lithium-metal batteries (LMBs). Herein, we discover that, instead of direct electron transfer from surface polar groups to bis(trifluoromethanesulfonyl)imide (TFSI) for inducing a LiF-rich SEI, the dipole-induced fluorinated-anion decomposition reaction begins with the adsorption of Li ions and is highly dependent on their mobility on the polar surface. To demonstrate this, a single-layer graphdiyne on MXene (sGDY@MXene) heterostructure has been successfully fabricated and integrated into polypropylene separators.

View Article and Find Full Text PDF

Livestock manure, a common fertilizer in Chinese agriculture, can lead to environmental contamination and potential health risks due to elevated antibiotic and phosphorus levels. Importantly, the high phosphorus levels initiates transformations of phosphate minerals in soils, especially calcareous soils. These variations in phosphate mineralogy can significantly impact the migration and fate of antibiotics within the soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!