High performance lacey reduced graphene oxide nanoribbons (LRGONR) were chemically synthesized. Holes created during the LRGONR synthesis not only enhanced the electrolytic accessibility but destacked all the graphene layers through protrusion at edge planes and corrugation in individual graphene. LRGONR in a supercapacitor cell showed ultrahigh performance in terms of specific capacitance and capacity retention. Consistently in aqueous, nonaqueous, and ionic electrolytes, LRGONR symmetric supercapacitor exhibited exceptionally high energy/power density, typically 15.06 W h kg(-1)/807 W kg(-1) in aqueous at 1.7 A g(-1), 90 W h kg(-1)/2046.8 W kg(-1) in nonaqueous at 1.8 A g(-1), and 181.5 W h kg(-1)/2316.8 W kg(-1) in ionic electrolyte at ∼1.6 A g(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1021/am5071706DOI Listing

Publication Analysis

Top Keywords

ultrahigh performance
8
lacey reduced
8
reduced graphene
8
graphene oxide
8
oxide nanoribbons
8
performance supercapacitor
4
supercapacitor lacey
4
graphene
4
nanoribbons high
4
high performance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!