Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The pathophysiology of the tics that define Gilles de la Tourette syndrome (TS) is not well understood. Local disinhibition within the striatum has been hypothesized to play a pathogenic role. In support of this, experimental disinhibition by local antagonism of GABA-A receptors within the striatum produces tic-like phenomenology in monkey and rat. We replicated this effect in mice via local picrotoxin infusion into the dorsal striatum. Infusion of picrotoxin into sensorimotor cortex produced similar movements, accompanied by signs of behavioral activation; higher-dose picrotoxin in the cortex produced seizures. Striatal inhibition with local muscimol completely abolished tic-like movements after either striatal or cortical picrotoxin, confirming their dependence on the striatal circuitry; in contrast, cortical muscimol attenuated but did not abolish movements produced by striatal picrotoxin. Striatal glutamate blockade eliminated tic-like movements after striatal picrotoxin, indicating that glutamatergic afferents are critical for their generation. These studies replicate and extend previous work in monkey and rat, providing additional validation for the local disinhibition model of tic generation. Our results reveal a key role for corticostriatal glutamatergic afferents in the generation of tic-like movements in this model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361636 | PMC |
http://dx.doi.org/10.1016/j.expneurol.2015.01.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!