Mammalian frataxin directly enhances sulfur transfer of NFS1 persulfide to both ISCU and free thiols.

Nat Commun

Institut de Chimie des Substances Naturelles, UPR2301, Centre de Recherche de Gif, Centre National de la Recherche Scientifique, 1 avenue de la terrasse, 91191 Gif Sur Yvette, France.

Published: January 2015

Friedreich's ataxia is a severe neurodegenerative disease caused by the decreased expression of frataxin, a mitochondrial protein that stimulates iron-sulfur (Fe-S) cluster biogenesis. In mammals, the primary steps of Fe-S cluster assembly are performed by the NFS1-ISD11-ISCU complex via the formation of a persulfide intermediate on NFS1. Here we show that frataxin modulates the reactivity of NFS1 persulfide with thiols. We use maleimide-peptide compounds along with mass spectrometry to probe cysteine-persulfide in NFS1 and ISCU. Our data reveal that in the presence of ISCU, frataxin enhances the rate of two similar reactions on NFS1 persulfide: sulfur transfer to ISCU leading to the accumulation of a persulfide on the cysteine C104 of ISCU, and sulfur transfer to small thiols such as DTT, L-cysteine and GSH leading to persulfuration of these thiols and ultimately sulfide release. These data raise important questions on the physiological mechanism of Fe-S cluster assembly and point to a unique function of frataxin as an enhancer of sulfur transfer within the NFS1-ISD11-ISCU complex.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms6686DOI Listing

Publication Analysis

Top Keywords

sulfur transfer
16
nfs1 persulfide
12
fe-s cluster
12
cluster assembly
8
nfs1-isd11-iscu complex
8
nfs1
5
persulfide
5
iscu
5
mammalian frataxin
4
frataxin directly
4

Similar Publications

Theoretical insights into fluorescent properties and ESIPT behavior of novel flavone-based fluorophore and its thiol and thione derivatives.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China. Electronic address:

For the typical ESIPT process, the proton transfer process is often completed via the intramolecular hydrogen bond (IHB) with oxygen or nitrogen as proton donor or proton acceptor. In recent years, the ESIPT process for sulfur-containing hydrogen bonds has received more and more attention, but it has been rarely reported. We systematically studied the ESIPT processes and photophysical properties of 2-(benzothiophene-2-yl)-3-hydroxy-4H-chromen-4-one (BTOH), 2-(benzothiophene-2-yl)-3-mercapto-4H-chromen-4-one (BTSH) and 2-(benzothiophen-2-yl)-3-hydroxy-4H-chromene-4-thione (BTS) at the HISSbPBE/6-31+G(d,p) and TD-HISSbPBE/6-31+G(d,p) computational level.

View Article and Find Full Text PDF

Pt single atoms promoting the construction of asymmetric double sites to achieve highly selective photoreduction of CO to ethylene.

J Colloid Interface Sci

December 2024

Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, PR China; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China.

In this work, Pt single atoms (SAs) were engineered on the surface of CdInS (CIS) to trigger abundant generation and stable existence of sulfur vacancies (S). Through quasi in situ X-ray photoelectron spectroscopy (XPS) and work function analysis, the photogenerated electrons are first captured by Pt SAs and S, and then transferred from Pt SAs to S, ultimately increasing the electron density of S. Meanwhile, S have significant advantages in adsorbing CO molecules.

View Article and Find Full Text PDF

Differences in the efficiency and mechanisms of different iron-based materials driving synchronous nitrogen and phosphorus removal.

Environ Res

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China. Electronic address:

Iron-dependent denitrification has been substantially investigated worldwide due to the advantages of low cost, high efficiency, and synchronized phosphorous removal. However, differences in nitrogen metabolism processes with different iron-based materials as electron donors have not been systematically studied. This study investigated the efficacy of nitrogen and phosphate removal using various iron-based materials as electron donors.

View Article and Find Full Text PDF

Ferredoxin 1 and 2 (FDX1/2) constitute an evolutionarily conserved FDX family of iron-sulfur cluster (ISC) containing proteins. FDX1/2 are cognate substrates of ferredoxin reductase (FDXR) and serve as conduits for electron transfer from NADPH to a set of proteins involved in biogenesis of steroids, hemes, ISC and lipoylated proteins. Recently, we showed that Fdx1 is essential for embryonic development and lipid homeostasis.

View Article and Find Full Text PDF

A novel metal-organic framework (MOF), (Cu-S)MOF, with a copper-sulfur planar structure was applied to photocatalytic H production application. (Cu-S)MOF@ZnS nanocomposite was synthesized using a microwave-assisted hydrothermal approach. The formation of (Cu-S)MOF and wurtzite ZnS in the composite nanoparticles was analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), and high-resolution transmission electron microscope (HRTEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!