Purpose: Correct foot structure is important due to locomotion and postural stability. The aim of this study was to determine the relationships between morphological foot structure and balance indices in a quiet standing position in women over 65 years of age.
Methods: The study included 116 women aged 65-90 years. The mean age was 70.6 ± 8.4 years and BMI 29.1 ± 3.4 m/kg2. The measured indices included postural control while standing on both feet and photogrammetric foot evaluation. An analysis was performed of the selected foot and balance indices.
Results: There were no significant differences observed in the feet structure. Certain correlations between some foot indices and the indices of postural control were noted. The increased differences in the width indices between the right and the left foot lead to balance deterioration. Larger angles of valgity and varus deformity of toes and indices describing the longitudinal arch and transverse front arch of the foot have the greatest impact on the deterioration of balance in the medio-lateral axis.
Conclusions: The differences between the indices and morphological indices for the right and the left foot are not significant, which indicates the proportionate formation of feet in the individual life. The increased differences in the width indices between the right and the left foot lead to balance deterioration. Larger angles of valgity and varus deformity of toes and indices describing the longitudinal arch and transverse front arch of the foot have the greatest impact on the deterioration of balance in the medio-lateral axis.
Download full-text PDF |
Source |
---|
Exp Brain Res
January 2025
Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
Vestibular dysfunction has been reported as a potential cause in adolescent idiopathic scoliosis (AIS). However, it remained unclear how stochastic galvanic vestibular stimulation (GVS) affected kinetic performance of patients with AIS. This study aimed to investigate the effect of stochastic GVS on ground reaction forces (GRF) measures during obstacle negotiation among patients with AIS.
View Article and Find Full Text PDFMov Disord
January 2025
Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
Background: Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder, with balance instability as a feature of the disease. Balance instability often manifests before the onset of obvious ataxic symptoms in patients. However, current clinical scales exhibit limited sensitivity in characterizing changes in pre-ataxic patients.
View Article and Find Full Text PDFAnn Indian Acad Neurol
January 2025
Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
Background And Objectives: Pain is an important non-motor symptom in Parkinson's disease (PD) and is often under-recognized. Pain is also a symptom frequently reported by non-PD elderly subjects. The King's Parkinson's Disease Pain Scale (KPPS) is a valid tool to characterize and quantify pain in PD and has been translated into several languages.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Research of the Aging Workforce, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan.
Improving physical balance among older workers is essential for preventing falls in workplace. We aimed to elucidate the age-related decline in one-leg standing time with eyes closed, an indicator of static balance, and mitigating influence of daily walking habits on this decline in Japan. This longitudinal study involved 249 manufacturing workers, including seven females, aged 20-66 years engaged in tasks performed at height in the aircraft and spacecraft machinery industry.
View Article and Find Full Text PDFJ Neurosci
January 2025
department of radiology, the first hospital of China medical University, Shenyang,110001, China
Hierarchy has been identified as a principle underlying the organization of human brain networks. However, it remains unclear how the network hierarchy is disrupted in Parkinson's disease (PD) motor symptoms and, how it is modulated by the underlying genetic architecture. The aim of this study was to explore alterations in the motor functional hierarchical organization of the cerebrum and their underlying genetic mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!