A novel series of tacrine derivatives were designed and synthesized by combining caffeic acid (CA), ferulic acid (FA) and lipoic acid (LA) with tacrine. The antioxidant study revealed that all the hybrids have much more antioxidant capacities compared to CA. Among these compounds, 1b possessed a good ability to inhibit the β-amyloid protein (Aβ) self-aggregation, sub-micromole acetylcholinesterase (AChE)/butyrylcholinesterase (BuChE) inhibitory, modest BACE1 inhibitory. Moreover, compound 1b also was a DPPH radical scavenger and copper chelatory as well as had potent neuroprotective effects against glutamate-induced cell death with low toxicity in HT22 cells. Our findings suggest that the compound 1b might be a promising lead multi-targeted ligand and worthy of further developing for the therapy of Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2014.12.084DOI Listing

Publication Analysis

Top Keywords

tacrine derivatives
8
synthesis pharmacological
4
pharmacological evaluation
4
evaluation multifunctional
4
multifunctional tacrine
4
derivatives disease
4
disease pathways
4
pathways novel
4
novel series
4
series tacrine
4

Similar Publications

Experimental and computational analysis of lipophilicity and plasma protein binding properties of potent tacrine based cholinesterase inhibitors.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Republic of Serbia. Electronic address:

The lipophilicity of thirteen tacrine/piperidine-4-carboxamide derivatives was assessed using reversed-phase thin-layer chromatography (RP-TLC) with MeOH and acetonitrile (ACN) as organic modifiers. Among the parameters evaluated, the R and C values obtained using MeOH were identified as the most reliable for characterizing the lipophilicity of the investigated compounds. The observed differences in lipophilicity among the derivatives resulted from a delicate interplay of substituent effects (hydrophobicity, polarity, steric hindrance, and electronic effects), positional influence, and characteristics of the organic modifier.

View Article and Find Full Text PDF

Tacrine is a centrally active non-competitive reversible acetylcholinesterase inhibitor. It also exerts antagonising activity against -methyl-D-aspartate receptors. Tacrine was approved for the treatment of Alzheimer's disease in 1993, but was withdrawn from clinical use in 2013 because of its hepatotoxicity and gastrointestinal side effects.

View Article and Find Full Text PDF

New benzimidazole-indole-amide derivatives as potent α-glucosidase and acetylcholinesterase inhibitors.

Arch Pharm (Weinheim)

January 2025

Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.

New derivatives 6a-m with benzimidazole-indole-amide scaffold were developed, synthesized, and assessed for potential inhibitory effects on α-glucosidase and acetylcholinesterase (AChE). These compounds were synthesized by various amine derivatives. With the exception of two compounds, the α-glucosidase inhibitory activities of the title derivatives were more than that of the positive control acarbose.

View Article and Find Full Text PDF

The rapid discovery of highly active butyrylcholinesterase (BChE) inhibitors is key to the treatment of the late stages of Alzheimer's disease. Herein, a colorimetric cellulose membrane (CM)-based biosensor was developed. The CM was employed as a carrier, which can be immobilized with the BChE and 5,5'-dithio-(2-nitrobenzoic acid) (DTNB) to prepare the biosensor for the solid-phase enzyme-catalyzed reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!