Intranasal immunization with an adenovirus vaccine protects guinea pigs from Ebola virus transmission by infected animals.

Antiviral Res

Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB, Canada; Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA. Electronic address:

Published: April 2015

Experimental Ebola virus (EBOV) vaccines have previously been shown to protect animals against a high dose intramuscular (IM) challenge, which is seen as a stringent challenge model. However, the protective efficacy against other modes of infection, such as contact with infectious hosts, is unknown. Using a previously established EBOV transmission animal model, we evaluated the efficacy of an adenovirus-based EBOV vaccine given to guinea pigs (gps) 4weeks before direct contact with untreated, infectious animals. Prior vaccination resulted in robust levels of EBOV-specific antibodies and conferred complete protection in gps. These results support the use of vaccines to prevent EBOV transmission between hosts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2015.01.001DOI Listing

Publication Analysis

Top Keywords

guinea pigs
8
ebola virus
8
ebov transmission
8
intranasal immunization
4
immunization adenovirus
4
adenovirus vaccine
4
vaccine protects
4
protects guinea
4
pigs ebola
4
virus transmission
4

Similar Publications

A Guinea Pig Model of Pediatric Metabolic Dysfunction-Associated Steatohepatitis: Poor Vitamin C Status May Advance Disease.

Nutrients

January 2025

Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.

Children and teenagers display a distinct metabolic dysfunction-associated steatohepatitis (MASH) phenotype, yet studies of childhood MASH are scarce and validated animal models lacking, limiting the development of treatments. Poor vitamin C (VitC) status may affect MASH progression and often co-occurs with high-fat diets and related metabolic imbalances. As a regulator of DNA methylation, poor VitC status may further contribute to MASH by regulating gene expression This study investigated guinea pigs-a species that, like humans, depends on vitC in the diet-as a model of pediatric MASH, examining the effects of poor VitC status on MASH hallmarks and global DNA methylation levels.

View Article and Find Full Text PDF

Natural products and botanicals continue to play a very important role in the development of cosmetics worldwide. The chemical constituents of a fine active fraction of the whole plant extract of Walp., and the tyrosinase and matrix metalloproteinase-1 (MMP-1) inhibitory and antioxidant activities of this fraction were investigated.

View Article and Find Full Text PDF

Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.

View Article and Find Full Text PDF

Cochlear implants are well established devices for treating severe hearing loss. However, due to the trauma caused by the insertion of the electrode and the subsequent formation of connective tissue, their clinical effectiveness varies. The aim of the current study was to achieve a long-term reduction in connective tissue growth and impedance by combining surface patterns on the electrode array with a poly-L-lactide coating containing 20% diclofenac.

View Article and Find Full Text PDF

Effects of cytochalasin D on relaxation process of skinned taenia cecum and carotid artery from guinea pig.

J Physiol Sci

January 2025

Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-Ku, 116-8551, Tokyo, Japan. Electronic address:

Actin linked regulatory mechanisms are known to contribute contraction/relaxation in smooth muscle. In order to clarify whether modulation of polymerization/depolymerization of actin filaments affects relaxation process, we examined the effects of cytochalasin D on relaxation process by Ca removal after Ca-induced contraction of β-escin skinned (cell membrane permeabilized) taenia cecum and carotid artery preparations from guinea pigs. Cytochalasin D, an inhibitor of actin polymerization, significantly suppressed the force during relaxation both in skinned taenia cecum and carotid artery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!