Tumorigenic activity of merkel cell polyomavirus T antigens expressed in the stratified epithelium of mice.

Cancer Res

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.

Published: March 2015

Merkel cell polyomavirus (MCPyV) is frequently associated with Merkel cell carcinoma (MCC), a highly aggressive neuroendocrine skin cancer. Most MCC tumors contain integrated copies of the viral genome with persistent expression of the MCPyV large T (LT) and small T (ST) antigen. MCPyV isolated from MCC typically contains wild-type ST but truncated forms of LT that retain the N-terminus but delete the C-terminus and render LT incapable of supporting virus replication. To determine the oncogenic activity of MCC tumor-derived T antigens in vivo, a conditional, tissue-specific mouse model was developed. Keratin 14-mediated Cre recombinase expression induced expression of MCPyV T antigens in stratified squamous epithelial cells and Merkel cells of the skin epidermis. Mice expressing MCPyV T antigens developed hyperplasia, hyperkeratosis, and acanthosis of the skin with additional abnormalities in whisker pads, footpads, and eyes. Nearly half of the mice also developed cutaneous papillomas. Evidence for neoplastic progression within stratified epithelia included increased cellular proliferation, unscheduled DNA synthesis, increased E2F-responsive genes levels, disrupted differentiation, and presence of a DNA damage response. These results indicate that MCPyV T antigens are tumorigenic in vivo, consistent with their suspected etiologic role in human cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359959PMC
http://dx.doi.org/10.1158/0008-5472.CAN-14-2425DOI Listing

Publication Analysis

Top Keywords

merkel cell
12
mcpyv antigens
12
cell polyomavirus
8
expression mcpyv
8
mcpyv
6
antigens
5
tumorigenic activity
4
merkel
4
activity merkel
4
polyomavirus antigens
4

Similar Publications

Merkel cell carcinoma is a rare neuroendocrine tumor with high mortality. It is well known that clonal integration of the Merkel cell polyomavirus into the dermal precursor cells is a hypothesized pathway in Merkel cell carcinoma pathogenesis. Here, we demonstrate a case of Merkel cell carcinoma (primary origin unknown) presenting with high Merkel cell polyomavirus DNA levels in swabs obtained from normal skin.

View Article and Find Full Text PDF

Merkel cell carcinoma (MCC) is an uncommon aggressive neoplasm, usually arising in sun-exposed skin of the head and neck. By immunohistochemistry, KRT20 and MCPyV positivity are found in about 90% and 80% of MCCs, respectively. Noteworthy, viral status in lip/oral cavity MCCs is poorly known.

View Article and Find Full Text PDF

Herpesviruses mimic zygotic genome activation to promote viral replication.

Nat Commun

January 2025

Institute of Virology, University Medical Center, and Faculty of Medicine, Albert-Ludwig-University Freiburg, Freiburg, Germany.

Zygotic genome activation (ZGA) is crucial for maternal to zygotic transition at the 2-8-cell stage in order to overcome silencing of genes and enable transcription from the zygotic genome. In humans, ZGA is induced by DUX4, a pioneer factor that drives expression of downstream germline-specific genes and retroelements. Here we show that herpesviruses from all subfamilies, papillomaviruses and Merkel cell polyomavirus actively induce DUX4 expression to promote viral transcription and replication.

View Article and Find Full Text PDF

Background: Merkel cell carcinoma (MCC) is a rare, aggressive cutaneous malignancy with neuroendocrine differentiation. Several molecular pathways have been implicated in MCC development and multiple cell-of-origin candidates have been proposed, including neural crest cells, which express acetylcholine receptors (AChRs). The role of nicotinic acetylcholine receptors (nAChRs) in MCC has not been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!