Radiosensitization to X-ray radiation by telomerase inhibitor MST-312 in human hepatoma HepG2 cells.

Life Sci

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People'sRepublic of China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, People's Republic of China. Electronic address:

Published: February 2015

Aims: Previous studies in malignant cells have shown that irradiation-induced upregulation of telomerase activity, not only protected damaged telomeres, but also contributed to DNA damage repair by chromosomal healing and increased resistance to irradiation. The purpose of the present study was to investigate the radiosensitizing effect of telomerase inhibitor MST-312 and the corresponding mechanism in the human hepatoma cell line HepG2.

Main Methods: Cell proliferation, telomerase activity, cell cycle distribution, DNA damage and repair, expression of p53, mitochondrial membrane potential, and cell apoptosis were measured with the MTT assay, real-time fluorescent quantitative PCR, flow cytometry, immunofluorescence, western blots, JC-1 staining, and Hoechst 33258 staining, respectively.

Key Findings: MST-312 effectively inhibited telomerase activity and showed relative weak toxicity to HepG2 cells at 4 μM. Compared with irradiation alone, 4 μM MST-312 pretreatment, followed by X-ray treatment, significantly reduced clonogenic potential. Aggravated DNA damage and increased sub-G1 cell fractions were observed. Further investigation found that homologous recombination (HR) repair protein Rad51 foci nuclear formation was blocked, and expression of p53 was elevated. These led to the collapse of mitochondrial membrane potential, and enhanced the apoptotic rate.

Significance: These data demonstrated that disturbances of telomerase function could enhance the radiosensitivity of HepG2 cells to X-ray irradiation by impairing HR repair processes. In addition, telomerase inhibitor MST-312 may be useful as an adjuvant treatment in combination with irradiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2014.12.027DOI Listing

Publication Analysis

Top Keywords

telomerase inhibitor
12
inhibitor mst-312
12
hepg2 cells
12
telomerase activity
12
dna damage
12
human hepatoma
8
damage repair
8
expression p53
8
mitochondrial membrane
8
membrane potential
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!