New strategies for targeting matrix metalloproteinases.

Matrix Biol

Florida Atlantic University, Department of Chemistry & Biochemistry, 5353 Parkside Drive, Building MC17, Jupiter, FL 33458, United States; The Scripps Research Institute/Scripps Florida, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458, United States; Torrey Pines Institute for Molecular Studies, Department of Chemistry, 11350 SW Village Parkway, Port St. Lucie, FL 34987, United States; Torrey Pines Institute for Molecular Studies, Department of Biology, 11350 SW Village Parkway, Port St. Lucie, FL 34987, United States. Electronic address:

Published: March 2016

The development of matrix metalloproteinase (MMP) inhibitors has often been frustrated by a lack of specificity and subsequent off-target effects. More recently, inhibitor design has considered secondary binding sites (exosites) to improve specificity. Small molecules and peptides have been developed that bind exosites in the catalytic (CAT) domain of MMP-13, the CAT or hemopexin-like (HPX) domain of MT1-MMP, and the collagen binding domain (CBD) of MMP-2 and MMP-9. Antibody-based approaches have resulted in selective inhibitors for MMP-9 and MT1-MMP that target CAT domain exosites. Triple-helical "mini-proteins" have taken advantage of collagen binding exosites, producing a family of novel probes. A variety of non-traditional approaches that incorporate exosite binding into the design process has yielded inhibitors with desirable selectivities within the MMP family.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466128PMC
http://dx.doi.org/10.1016/j.matbio.2015.01.002DOI Listing

Publication Analysis

Top Keywords

cat domain
8
collagen binding
8
strategies targeting
4
targeting matrix
4
matrix metalloproteinases
4
metalloproteinases development
4
development matrix
4
matrix metalloproteinase
4
metalloproteinase mmp
4
mmp inhibitors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!