The molecular mechanisms of membrane merger during somatic cell fusion in eukaryotic species are poorly understood. In the filamentous fungus Neurospora crassa, somatic cell fusion occurs between genetically identical germinated asexual spores (germlings) and between hyphae to form the interconnected network characteristic of a filamentous fungal colony. In N. crassa, two proteins have been identified to function at the step of membrane fusion during somatic cell fusion: PRM1 and LFD-1. The absence of either one of these two proteins results in an increase of germling pairs arrested during cell fusion with tightly appressed plasma membranes and an increase in the frequency of cell lysis of adhered germlings. The level of cell lysis in ΔPrm1 or Δlfd-1 germlings is dependent on the extracellular calcium concentration. An available transcriptional profile data set was used to identify genes encoding predicted transmembrane proteins that showed reduced expression levels in germlings cultured in the absence of extracellular calcium. From these analyses, we identified a mutant (lfd-2, for late fusion defect-2) that showed a calcium-dependent cell lysis phenotype. lfd-2 encodes a protein with a Fringe domain and showed endoplasmic reticulum and Golgi membrane localization. The deletion of an additional gene predicted to encode a low-affinity calcium transporter, fig1, also resulted in a strain that showed a calcium-dependent cell lysis phenotype. Genetic analyses showed that LFD-2 and FIG1 likely function in separate pathways to regulate aspects of membrane merger and repair during cell fusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346563PMC
http://dx.doi.org/10.1128/EC.00233-14DOI Listing

Publication Analysis

Top Keywords

cell fusion
24
cell lysis
16
somatic cell
12
cell
10
fusion
8
neurospora crassa
8
membrane merger
8
extracellular calcium
8
calcium-dependent cell
8
lysis phenotype
8

Similar Publications

The global burden of respiratory syncytial virus (RSV) and severe associated disease is prodigious. RSV-specific vaccines have been launched recently but there is no antiviral medicine commercially available. RSV polymerase (L) protein is one of the promising antiviral targets, along with fusion and nucleocapsid proteins.

View Article and Find Full Text PDF

Unlabelled: Human metapneumovirus (HMPV) is a significant respiratory pathogen, particularly in vulnerable populations.

Background: No vaccine for the prevention of HMPV is currently licensed, although several subunit vaccines are in development. Saponin-based adjuvant systems (AS), including QS-21, have transformed the field of subunit vaccines by dramatically increasing their potency and efficacy, leading to the development of several licensed vaccines.

View Article and Find Full Text PDF

The placenta plays a critical role in nutrient and oxygen exchange during pregnancy, yet the effects of medicinal drugs on this selective barrier remain poorly understood. To overcome this, this study presents a cost-effective bioimpedance spectroscopy (BIS) system to assess tight junction integrity and monolayer formation in BeWo b30 cells, a widely used model of the multinucleated maternal-fetal exchange surface of the placental barrier. Cells were cultured on collagen-coated porous membranes and treated with forskolin to induce controlled syncytialization.

View Article and Find Full Text PDF

Tea wine has garnered significant attention due to its unique fusion of tea and wine flavors, as well as its alleged health benefits. This study aimed to investigate the effects of various treatments on the physicochemical properties of tea wine, including viable cell counts, pH, acidity, total ester content, tea polyphenol content, and volatile flavoring substances during the storage period. The findings indicated that tea wine subjected to low-temperature plasma (LTPS) treatment exhibited superior quality maintenance and an enhanced tea polyphenol content compared to untreated, UV-treated, and HTHP-treated tea wine.

View Article and Find Full Text PDF

LncSL: A Novel Stacked Ensemble Computing Tool for Subcellular Localization of lncRNA by Amino Acid-Enhanced Features and Two-Stage Automated Selection Strategy.

Int J Mol Sci

December 2024

School of Computer Science and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou University, Changzhou 213164, China.

Long non-coding RNA (lncRNA) is a non-coding RNA longer than 200 nucleotides, crucial for functions like cell cycle regulation and gene transcription. Accurate localization prediction from sequence information is vital for understanding lncRNA's biological roles. Computational methods offer an effective alternative to traditional experimental methods for annotating lncRNA subcellular positions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!